]> AND Private Git Repository - dmems12.git/blobdiff - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
11ème :
[dmems12.git] / dmems12.tex
index 534a689f04861dea4bff6d500add0d369c3a5f4e..10db6244de9d66bf5861f7f42700d7a49ee986ba 100644 (file)
@@ -44,7 +44,7 @@
 
 
 
-\title{Using FPGAs for high speed and real time cantilever deflection estimation}
+\title{A new approach based on least square methods to estimate in real time cantilevers deflection with a FPGA}
 \author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}}
 \IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\
 \{raphael.couturier,stephane.domas\}@univ-fcomte.fr}
@@ -90,19 +90,18 @@ the cantiliver which result in a complex fabrication process.
 
 In this  paper our attention is focused  on a method based  on interferometry to
 measure cantilevers' displacements.  In  this method cantilevers are illuminated
-by  an optic  source. The  interferometry produces  fringes on  each cantilevers
+by  an optic  source. The  interferometry produces  fringes on  each cantilever
 which enables to  compute the cantilever displacement.  In  order to analyze the
 fringes a  high speed camera  is used. Images  need to be processed  quickly and
 then  a estimation  method is  required to  determine the  displacement  of each
-cantilever.  In~\cite{AFMCSEM11},  the authors have  used an algorithm  based on
+cantilever.  In~\cite{AFMCSEM11},  authors have  used an algorithm  based on
 spline to estimate the cantilevers' positions.
 
-   The overall  process gives
-accurate results  but all the computation  are performed on  a standard computer
-using labview.  Consequently,  the main drawback of this  implementation is that
-the computer is a bootleneck in the overall process. In this paper we propose to
-use a  method based on least  square and to  implement all the computation  on a
-FGPA.
+The overall process gives accurate results but all the computations
+are performed on a standard computer using LabView.  Consequently, the
+main drawback of this implementation is that the computer is a
+bootleneck. In this paper we propose to use a method based on least
+square and to implement all the computation on a FGPA.
 
 The remainder  of the paper  is organized as  follows. Section~\ref{sec:measure}
 describes  more precisely  the measurement  process. Our  solution based  on the
@@ -118,13 +117,6 @@ presented.
 \section{Measurement principles}
 \label{sec:measure}
 
-
-
-
-
-
-
-
 \subsection{Architecture}
 \label{sec:archi}
 %% description de l'architecture générale de l'acquisition d'images
@@ -138,24 +130,26 @@ deflection scheme and  sentitive to the angular displacement  of the cantilever,
 interferometry  is sensitive  to  the  optical path  difference  induced by  the
 vertical displacement of the cantilever.
 
-The system build  by authors of~\cite{AFMCSEM11} has been  developped based on a
-Linnick     interferomter~\cite{Sinclair:05}.    It     is     illustrated    in
-Figure~\ref{fig:AFM}.  A  laser diode  is first split  (by the splitter)  into a
-reference beam and a sample beam  that reachs the cantilever array.  In order to
-be  able to  move  the cantilever  array, it  is  mounted on  a translation  and
-rotational hexapod  stage with  five degrees of  freedom. The optical  system is
-also fixed to the stage.  Thus,  the cantilever array is centered in the optical
-system which  can be adjusted accurately.   The beam illuminates the  array by a
-microscope objective  and the  light reflects on  the cantilevers.  Likewise the
-reference beam  reflects on a  movable mirror.  A  CMOS camera chip  records the
-reference and  sample beams which  are recombined in  the beam splitter  and the
-interferogram.   At the  beginning of  each  experiment, the  movable mirror  is
-fitted  manually in  order to  align the  interferometric  fringes approximately
-parallel  to the cantilevers.   When cantilevers  move due  to the  surface, the
-bending of  cantilevers produce  movements in the  fringes that can  be detected
-with    the    CMOS    camera.     Finally    the    fringes    need    to    be
-analyzed. In~\cite{AFMCSEM11}, the authors used a LabView program to compute the
-cantilevers' movements from the fringes.
+The system build by these authors is based on a Linnick
+interferomter~\cite{Sinclair:05}.  It is illustrated in
+Figure~\ref{fig:AFM}.  A laser diode is first split (by the splitter)
+into a reference beam and a sample beam that reachs the cantilever
+array.  In order to be able to move the cantilever array, it is
+mounted on a translation and rotational hexapod stage with five
+degrees of freedom. The optical system is also fixed to the stage.
+Thus, the cantilever array is centered in the optical system which can
+be adjusted accurately.  The beam illuminates the array by a
+microscope objective and the light reflects on the cantilevers.
+Likewise the reference beam reflects on a movable mirror.  A CMOS
+camera chip records the reference and sample beams which are
+recombined in the beam splitter and the interferogram.  At the
+beginning of each experiment, the movable mirror is fitted manually in
+order to align the interferometric fringes approximately parallel to
+the cantilevers.  When cantilevers move due to the surface, the
+bending of cantilevers produce movements in the fringes that can be
+detected with the CMOS camera.  Finally the fringes need to be
+analyzed. In~\cite{AFMCSEM11}, authors used a LabView program to
+compute the cantilevers' deflections from the fringes.
 
 \begin{figure}    
 \begin{center}
@@ -171,21 +165,29 @@ cantilevers' movements from the fringes.
 \subsection{Cantilever deflection estimation}
 \label{sec:deflest}
 
-As shown on image \ref{img:img-xp}, each cantilever is covered by
-interferometric fringes. The fringes will distort when cantilevers are
-deflected. Estimating the deflection is done by computing this
-distortion. For that, (ref A. Meister + M Favre) proposed a method
-based on computing the phase of the fringes, at the base of each
-cantilever, near the tip, and on the base of the array. They assume
-that a linear relation binds these phases, which can be use to
-"unwrap" the phase at the tip and to determine the deflection.\\
-
-More precisely, segment of pixels are extracted from images taken by a
-high-speed camera. These segments are large enough to cover several
-interferometric fringes and are placed at the base and near the tip of
-the cantilevers. They are called base profile and tip profile in the
-following. Furthermore, a reference profile is taken on the base of
-the cantilever array.
+\begin{figure}    
+\begin{center}
+\includegraphics[width=\columnwidth]{lever-xp}
+\end{center}
+\caption{Portion of an image picked by the camera}
+\label{fig:img-xp}   
+\end{figure}
+
+As shown on image \ref{fig:img-xp}, each cantilever is covered by
+several interferometric fringes. The fringes will distort when
+cantilevers are deflected. Estimating the deflection is done by
+computing this distortion. For that, authors of \cite{AFMCSEM11}
+proposed a method based on computing the phase of the fringes, at the
+base of each cantilever, near the tip, and on the base of the
+array. They assume that a linear relation binds these phases, which
+can be use to "unwrap" the phase at the tip and to determine the deflection.\\
+
+More precisely, segment of pixels are extracted from images taken by
+the camera. These segments are large enough to cover several
+interferometric fringes. As said above, they are placed at the base
+and near the tip of the cantilevers. They are called base profile and
+tip profile in the following. Furthermore, a reference profile is
+taken on the base of the cantilever array.
 
 The pixels intensity $I$ (in gray level) of each profile is modelized by:
 
@@ -344,10 +346,11 @@ that communicate between i.MX and Spartan6, using Spartan3 as a
 tunnel. By default, the WEIM interface provides a clock signal at
 100MHz that is connected to dedicated FPGA pins.
 
-The Spartan6 is an LX100 version. It has 15822 slices, equivalent to
-101261 logic cells. There are 268 internal block RAM of 18Kbits, and
-180 dedicated multiply-adders (named DSP48), which is largely enough
-for our project.
+The Spartan6 is an LX100 version. It has 15822 slices, each slice
+containing 4 LUTs and 8 flip/flops. It is equivalent to 101261 logic
+cells. There are 268 internal block RAM of 18Kbits, and 180 dedicated
+multiply-adders (named DSP48), which is largely enough for our
+project.
 
 Some I/O pins of Spartan6 are connected to two $2\times 17$ headers
 that can be used as user wants. For the project, they will be
@@ -362,18 +365,18 @@ phase. The second one, detailed in this article, is based on a
 classical least square method but suppose that frequency is already
 known.
 
-\subsubsection{Spline algorithm}
+\subsubsection{Spline algorithm (SPL)}
 \label{sec:algo-spline}
 Let consider a profile $P$, that is a segment of $M$ pixels with an
 intensity in gray levels. Let call $I(x)$ the intensity of profile in $x
 \in [0,M[$. 
 
-At  first, only $M$  values of  $I$ are  known, for  $x =  0, 1,  \ldots,M-1$. A
-normalisation  allows  to scale  known  intensities  into  $[-1,1]$. We  compute
-splines  that fit  at best  these normalised  intensities. Splines  (SPL  in the
-following) are  used to interpolate $N  = k\times M$ points  (typically $k=4$ is
-sufficient), within $[0,M[$. Let call  $x^s$ the coordinates of these $N$ points
-    and $I^s$ their intensities.
+At first, only $M$ values of $I$ are known, for $x = 0, 1,
+\ldots,M-1$. A normalisation allows to scale known intensities into
+$[-1,1]$. We compute splines that fit at best these normalised
+intensities. Splines are used to interpolate $N = k\times M$ points
+(typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the
+coordinates of these $N$ points and $I^s$ their intensities.
 
 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
 computed. Finding intersections of $I^s$ and this line allow to obtain
@@ -394,7 +397,7 @@ Two things can be noticed:
   computation of $\theta$.
 \end{itemize}
 
-\subsubsection{Least square algorithm}
+\subsubsection{Least square algorithm (LSQ)}
 
 Assuming that we compute the phase during the acquisition loop,
 equation \ref{equ:profile} has only 4 parameters: $a, b, A$, and
@@ -694,24 +697,42 @@ will include real experiments in the final version of this paper.
 % - en parallèle : simulink et VHDL à la main
 
 
-From the  LSQ algorithm,  we have written  a C  program which uses  only integer
-values  that have  been  previously  scaled. The  quantization  of doubles  into
-integers has  been performed  in order  to obtain a  good trade-off  between the
-number of bits  used and the precision. We have  compared the result of
-the LSQ version  using integers and doubles. We have observed  that the results of
-both versions were similar.
-
-Then we have built  two versions of VHDL codes: one directly  by hand coding and
-the     other     with    Matlab     using     the     Simulink    HDL     coder
-feature~\cite{HDLCoder}. Although  the approach is completely  different we have
-obtain VHDL  codes that are quite  comparable. Each approach  has advantages and
-drawbacks.   Roughly speaking, hand  coding provides  beautiful and  much better
-structured code  while HDL  coder provides  code faster.  In  terms of  speed of
-code, we  think that both  approaches will be  quite comparable with  a slightly
-advantage for hand coding.  We hope that real experiments will confirm that.  In
-the  LSQ algorithm, we  have replaced  all the  divisions by  multiplications by
-constants since divisions  are performed with constants depending  of the number
-of pixels in the profile (i.e. $M$).
+From the LSQ algorithm, we have written a C program that uses only
+integer values. We use a very simple quantization by multiplying
+double precision values by a power of two, keeping the integer
+part. For example, all values stored in lut$_s$, lut$_c$, $\ldots$ are
+scaled by 1024.  Since LSQ also computes average, variance, ... to
+remove the slope, the result of implied euclidian divisions may be
+relatively wrong. To avoid that, we also scale the pixel intensities
+by a power of two. Futhermore, assuming $nb_s$ is fixed, these
+divisions have a knonw denominator. Thus, they can be replaced by
+their multiplication/shift counterpart. Finally, all other
+multiplications or divisions by a power of two have been replaced by
+left or right bit shifts. By the way, the code only contains
+additions, substractions and multiplications of signed integers, which
+is perfectly adapted to FGPAs.
+
+As said above, hardware constraints have a great influence on the VHDL
+implementation. Consequently, we searched the maximum value of each
+variable as a function of the different scale factors and the size of
+profiles, which gives their maximum size in bits. That size determines
+the maximum scale factors that allow to use the least possible RAMs
+and DSPs. Actually, we implemented our algorithm with this maximum
+size but current works study the impact of quantization on the results
+precision and design complexity. We have compared the result of the
+LSQ version using integers and doubles and observed that the precision
+of both were similar.
+
+Then we built two versions of VHDL codes: one directly by hand coding
+and the other with Matlab using the Simulink HDL coder
+feature~\cite{HDLCoder}. Although the approach is completely different
+we obtained VHDL codes that are quite comparable. Each approach has
+advantages and drawbacks.  Roughly speaking, hand coding provides
+beautiful and much better structured code while Simulink allows to
+produce a code faster.  In terms of throughput and latency,
+simulations shows that the two approaches are close with a slight
+advantage for hand coding.  We hope that real experiments will confirm
+that.
 
 \subsection{Simulation}