+For the first item, we produced a matlab version of each algorithm,
+running with double precision values. The profile was generated for
+about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1),
+phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$,
+step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of
+$\frac{\pi}{1024}$ on phase computation. Current A. Meister and
+M. Favre experiments show a ratio of 50 between variation of phase and
+the deflection of a lever. Thus, the maximal error due to
+discretization correspond to an error of 0.15nm on the lever
+deflection, which is smaller than the best precision they achieved,
+i.e. 0.3nm.
+
+For each test, we add some noise to the profile: each group of two
+pixels has its intensity added to a random number picked in $[-N,N]$
+(NB: it should be noticed that picking a new value for each pixel does
+not distort enough the profile). The absolute error on the result is
+evaluated by comparing the difference between the reference and
+computed phase, out of $2\pi$, expressed in percents. That is: $err =
+100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$.
+
+Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$.
+
+\begin{table}[ht]
+ \begin{center}
+ \begin{tabular}{|c|c|c|c|c|}
+ \hline
+ & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
+ noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline
+ 0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
+ 2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
+ 5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
+ 7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
+ 10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
+ 15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
+ 30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
+
+\end{tabular}
+\caption{Error (in \%) for cosinus profiles, with noise.}
+\label{tab:algo_prec}
+\end{center}
+\end{table}
+
+These results show that the two algorithms are very close, with a
+slight advantage for LSQ. Furthemore, both behave very well against
+noise. Assuming the experimental ratio of 50 (see above), an error of
+1 percent on phase correspond to an error of 0.5nm on the lever
+deflection, which is very close to the best precision.
+
+Obviously, it is very hard to predict which level of noise will be
+present in real experiments and how it will distort the
+profiles. Nevertheless, we can see on figure \ref{fig:noise20} the
+profile with $N=10$ that leads to the biggest error. It is a bit
+distorted, with pikes and straight/rounded portions, and relatively
+close to most of that come from experiments. Figure \ref{fig:noise60}
+shows a sample of worst profile for $N=30$. It is completly distorted,
+largely beyond the worst experimental ones.
+
+\begin{figure}[ht]
+\begin{center}
+ \includegraphics[width=\columnwidth]{intens-noise20}
+\end{center}
+\caption{Sample of worst profile for N=10}
+\label{fig:noise20}
+\end{figure}
+
+\begin{figure}[ht]
+\begin{center}
+ \includegraphics[width=\columnwidth]{intens-noise60}
+\end{center}
+\caption{Sample of worst profile for N=30}
+\label{fig:noise60}
+\end{figure}
+
+The second criterion is relatively easy to estimate for LSQ and harder
+for SPL because of $atan$ operation. In both cases, it is proportional
+to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for
+SPL on $N = k\times M$, i.e. the number of interpolated points.
+
+We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are
+already in lookup tables and a limited set of operations (+, -, *, /,
+$<$, $>$) is taken account. Translating the two algorithms in C code, we
+obtain about 430 operations for LSQ and 1550 (plus few tenth for
+$atan$) for SPL. This result is largely in favor of LSQ. Nevertheless,
+considering the total number of operations is not really pertinent for
+an FPGA implementation: it mainly depends on the type of operations
+and their
+ordering. The final decision is thus driven by the third criterion.\\
+
+The Spartan 6 used in our architecture has hard constraint: it has no
+built-in floating point units. Obviously, it is possible to use some
+existing "black-boxes" for double precision operations. But they have
+a quite long latency. It is much simpler to exclusively use integers,
+with a quantization of all double precision values. Obviously, this
+quantization should not decrease too much the precision of
+results. Furthermore, it should not lead to a design with a huge
+latency because of operations that could not complete during a single
+or few clock cycles. Divisions are in this case and, moreover, they
+need an varying number of clock cycles to complete. Even
+multiplications can be a problem: DSP48 take inputs of 18 bits
+maximum. For larger multiplications, several DSP must be combined,
+increasing the latency.
+
+Nevertheless, the hardest constraint does not come from the FPGA
+characteristics but from the algorithms. Their VHDL implentation will
+be efficient only if they can be fully (or near) pipelined. By the
+way, the choice is quickly done: only a small part of SPL can be.
+Indeed, the computation of spline coefficients implies to solve a
+tridiagonal system $A.m = b$. Values in $A$ and $b$ can be computed
+from incoming pixels intensity but after, the back-solve starts with
+the lastest values, which breaks the pipeline. Moreover, SPL relies on
+interpolating far more points than profile size. Thus, the end
+of SPL works on a larger amount of data than the beginning, which
+also breaks the pipeline.
+
+LSQ has not this problem: all parts except the dichotomial search
+work on the same amount of data, i.e. the profile size. Furthermore,
+LSQ needs less operations than SPL, implying a smaller output
+latency. Consequently, it is the best candidate for phase
+computation. Nevertheless, obtaining a fully pipelined version
+supposes that operations of different parts complete in a single clock
+cycle. It is the case for simulations but it completely fails when
+mapping and routing the design on the Spartan6. By the way,
+extra-latency is generated and there must be idle times between two
+profiles entering into the pipeline.
+
+%%Before obtaining the least bitstream, the crucial question is: how to
+%%translate the C code the LSQ into VHDL ?
+
+
+%\subsection{VHDL design paradigms}
+
+\section{Experimental tests}
+
+\subsection{VHDL implementation}
+
+% - ecriture d'un code en C avec integer
+% - calcul de la taille max en bit de chaque variable en fonction de la quantization.
+% - tests de quantization : équilibre entre précision et contraintes FPGA
+% - en parallèle : simulink et VHDL à la main
+%
+\subsection{Simulation}
+
+% ghdl + gtkwave
+% au mieux : une phase tous les 33 cycles, latence de 95 cycles.
+% mais routage/placement impossible.
+\subsection{Bitstream creation}
+
+% pas fait mais prévision d'une sortie tous les 480ns avec une latence de 1120