-Currently both approaches provide synthesable bitstreams with ISE. We expect
-that the pipeline will have a latency of 112 cycles, i.e. 1.12$\mu$s and it
-could accept new profiles of pixel each 48 cycles, i.e. 480$n$s.
+In order to test our code on the SP Vision board, the design was
+extended with a component that keeps profiles in RAM, flushes them in
+the phase computation component and stores its output in another
+RAM. We also added a wishbone : a component that can "drive" signals
+to communicate between i.MX and others components. It is mainly used
+to start to flush profiles and to retrieve the computed phases in RAM.
+
+Unfortunatly, the first designs could not be placed and route with ISE
+on the Spartan6 with a 100MHz clock. The main problems came from
+routing values from RAMs to DSPs and obtaining a result under 10ns. By
+the way, we needed to decompose some parts of the pipeline, which adds
+some cycles. For example, some delays have been introduced between
+RAMs output and DSPs. Finally, we obtained a bitstream that has a
+latency of 112 cycles and computes a new phase every 40 cycles. For
+100 cantilevers, it takes $(112 + 200\times 40).10 = 81.12\mu$s to
+compute their deflection.
+
+This bitstream has been successfully tested on the board TODAY ! YEAAHHHHH
+