]> AND Private Git Repository - dmems12.git/blobdiff - dmems12.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Merge branch 'master' of ssh://bilbo.iut-bm.univ-fcomte.fr/dmems12
[dmems12.git] / dmems12.tex
index eb96b5e2868f16e55dc71e3dd178d716f2155f96..e5a7838fd0f72e83b1ba3943e1aa6510d4d2f738 100644 (file)
@@ -71,7 +71,7 @@
 
 \section{Introduction}
 
-Cantilevers  are  used  inside  atomic  force  microscope  which  provides  high
+Cantilevers  are  used  inside  atomic  force  microscope (AFM) which  provides  high
 resolution images of  surfaces.  Several technics have been  used to measure the
 displacement  of cantilevers  in litterature.   For example,  it is  possible to
 determine  accurately  the  deflection  with different  mechanisms. 
@@ -90,7 +90,7 @@ fringes a  high speed camera  is used. Images  need to be processed  quickly and
 then  a estimation  method is  required to  determine the  displacement  of each
 cantilever.  In~\cite{AFMCSEM11},  the authors have  used an algorithm  based on
 spline to estimate the cantilevers' positions.
-%%RAPH : ce qui est génant c'est qu'ils ne parlent pas de spline dans ce papier...
+
    The overall  process gives
 accurate results  but all the computation  are performed on  a standard computer
 using labview.  Consequently,  the main drawback of this  implementation is that
@@ -131,25 +131,33 @@ interferometry. In opposition to other optical based systems, using a laser beam
 deflection scheme and  sentitive to the angular displacement  of the cantilever,
 interferometry  is sensitive  to  the  optical path  difference  induced by  the
 vertical displacement of the cantilever.
-%%RAPH : est ce qu'on pique une image? génant ou non?
+
 The system build  by authors of~\cite{AFMCSEM11} has been  developped based on a
-Linnick interferomter~\cite{Sinclair:05}.   A laser beam is first  split (by the
-splitter) into  a reference beam  and a sample  beam that reachs  the cantilever
-array.  In  order to be able  to move the cantilever  array, it is  mounted on a
-translation  and rotational  stage with  five  degrees of  freedom. The  optical
-system is also fixed to the stage. Thus, the cantilever array is centered in the
-optical system which can be adjusted accurately.  The beam illuminates the array
-by a  microscope objective and the  light reflects on  the cantilevers. Likewise
-the reference beam reflects on a movable mirror.  A CMOS camera chip records the
+Linnick     interferomter~\cite{Sinclair:05}.    It     is     illustrated    in
+Figure~\ref{fig:AFM}.  A  laser diode  is first split  (by the splitter)  into a
+reference beam and a sample beam  that reachs the cantilever array.  In order to
+be  able to  move  the cantilever  array, it  is  mounted on  a translation  and
+rotational hexapod  stage with  five degrees of  freedom. The optical  system is
+also fixed to the stage.  Thus,  the cantilever array is centered in the optical
+system which  can be adjusted accurately.   The beam illuminates the  array by a
+microscope objective  and the  light reflects on  the cantilevers.  Likewise the
+reference beam  reflects on a  movable mirror.  A  CMOS camera chip  records the
 reference and  sample beams which  are recombined in  the beam splitter  and the
-interferogram. At the beginning of each experiment, the movable mirror is fitted
-manually in order to align the interferometric fringes approximately parallel to
-the  cantilevers. When  cantilevers  move due  to  the surface,  the bending  of
-cantilevers produce movements in the fringes  that can be detected with the CMOS
-camera.  Finally  the fringes  need  to  be  analyzed. In~\cite{AFMCSEM11},  the
-authors used  a LabView program to  compute the cantilevers'  movements from the
-fringes.
-
+interferogram.   At the  beginning of  each  experiment, the  movable mirror  is
+fitted  manually in  order to  align the  interferometric  fringes approximately
+parallel  to the cantilevers.   When cantilevers  move due  to the  surface, the
+bending of  cantilevers produce  movements in the  fringes that can  be detected
+with    the    CMOS    camera.     Finally    the    fringes    need    to    be
+analyzed. In~\cite{AFMCSEM11}, the authors used a LabView program to compute the
+cantilevers' movements from the fringes.
+
+\begin{figure}    
+\begin{center}
+\includegraphics[width=\columnwidth]{AFM}
+\end{center}
+\caption{schema of the AFM}
+\label{fig:AFM}   
+\end{figure}
 
 
 %% image tirée des expériences.
@@ -270,7 +278,7 @@ At first, only $M$ values of $I$ are known, for $x = 0, 1,
 \ldots,M-1$. A normalisation allows to scale known intensities into
 $[-1,1]$. We compute splines that fit at best these normalised
 intensities. Splines are used to interpolate $N = k\times M$ points
-(typically $k=3$ is sufficient), within $[0,M[$. Let call $x^s$ the
+(typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the
 coordinates of these $N$ points and $I^s$ their intensities.
 
 In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is
@@ -282,12 +290,15 @@ The phase is computed via the equation :
 \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right]
 \end{equation}
 
-Two things can be noticed. Firstly, the frequency could also be
-obtained using the derivates of spline equations, which only implies
-to solve quadratic equations. Secondly, frequency of each profile is
-computed a single time, before the acquisition loop. Thus, $sin(2\pi f
-x^s_i)$ and $cos(2\pi f x^s_i)$ could also be computed before the loop, which leads to a
-much faster computation of $\theta$.
+Two things can be noticed :
+\begin{itemize}
+\item the frequency could also be obtained using the derivates of
+  spline equations, which only implies to solve quadratic equations.
+\item frequency of each profile is computed a single time, before the
+  acquisition loop. Thus, $sin(2\pi f x^s_i)$ and $cos(2\pi f x^s_i)$
+  could also be computed before the loop, which leads to a much faster
+  computation of $\theta$.
+\end{itemize}
 
 \subsubsection{Least square algorithm}
 
@@ -342,13 +353,15 @@ Several points can be noticed :
 computed.
 
 \item The simplest method to find the good $\theta$ is to discretize
-  $[-\pi,\pi]$ in $N$ steps, and to search which step leads to the
+  $[-\pi,\pi]$ in $nb_s$ steps, and to search which step leads to the
   result closest to zero. By the way, three other lookup tables can
   also be computed before the loop :
 
-\[ sin \theta, cos \theta, \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
+\[ sin \theta, cos \theta, \]
+
+\[ \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \]
 
-\item This search can be very fast using a dichotomous process in $log_2(N)$ 
+\item This search can be very fast using a dichotomous process in $log_2(nb_s)$ 
 
 \end{itemize}
 
@@ -366,15 +379,15 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
 
    \For{$i=0$ to $nb_s $}{
      $\theta  \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\
-     lut\_sin[$i$] $\leftarrow sin \theta$\\
-     lut\_cos[$i$] $\leftarrow cos \theta$\\
-     lut\_A[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
-     lut\_sinfi[$i$] $\leftarrow sin (2\pi f.i)$\\
-     lut\_cosfi[$i$] $\leftarrow cos (2\pi f.i)$\\
+     lut$_s$[$i$] $\leftarrow sin \theta$\\
+     lut$_c$[$i$] $\leftarrow cos \theta$\\
+     lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\
+     lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\
+     lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\
    }
 \end{algorithm}
 
-\begin{algorithm}[h]
+\begin{algorithm}[ht]
 \caption{LSQ algorithm - during acquisition loop.}
 \label{alg:lsq-during}
 
@@ -391,7 +404,7 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
    $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\
    $start \leftarrow y_{moy} - slope\times \bar{x}$\\
    \For{$i=0$ to $M-1$}{
-     $I[i] \leftarrow I[i] - start - slope\times i$\tcc*[f]{slope removal}\\
+     $I[i] \leftarrow I[i] - start - slope\times i$\\
    }
    
    $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\
@@ -399,27 +412,146 @@ Finally, the whole summarizes in an algorithm (called LSQ in the following) in t
 
    $Is \leftarrow 0$, $Ic \leftarrow 0$\\
    \For{$i=0$ to $M-1$}{
-     $Is \leftarrow Is + I[i]\times $ lut\_sinfi[$i$]\\
-     $Ic \leftarrow Ic + I[i]\times $ lut\_cosfi[$i$]\\
+     $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\
+     $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\
    }
 
-   $\theta \leftarrow -\pi$\\
-   $val_1 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
-   \For{$i=1-n_s$ to $n_s$}{
-     $\theta \leftarrow \frac{i.\pi}{n_s}$\\
-     $val_2 \leftarrow 2\times \left[ Is.\cos(\theta) + Ic.\sin(\theta) \right] - amp\times \left[ c4i.\sin(2\theta) + s4i.\cos(2\theta) \right]$\\
+   $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\
+   $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\
+
+   \While{$\delta >= 1$}{
+
+     $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
 
-     \lIf{$val_1 < 0$ et $val_2 >= 0$}{
-       $\theta_s \leftarrow \theta - \left[ \frac{val_2}{val_2-val_1}\times \frac{\pi}{n_s} \right]$\\
+     \If{$!(v_l < 0$ and $v_r >= 0)$}{
+       $v_l \leftarrow v_r$ \\
+       $b_l \leftarrow b_r$ \\
      }
-     $val_1 \leftarrow val_2$\\
+     $\delta \leftarrow \frac{\delta}{2}$\\
+     $b_r \leftarrow b_l + \delta$\\
+   }
+   \uIf{$!(v_l < 0$ and $v_r >= 0)$}{
+     $v_l \leftarrow v_r$ \\
+     $b_l \leftarrow b_r$ \\
+     $b_r \leftarrow b_l + 1$\\
+     $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\
+   }
+   \Else {
+     $b_r \leftarrow b_l + 1$\\
    }
 
-\end{algorithm}
+   \uIf{$ abs(v_l) < v_r$}{
+     $b_{\theta} \leftarrow b_l$ \\
+   }
+   \Else {
+     $b_{\theta} \leftarrow b_r$ \\
+   }
+   $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\
 
+\end{algorithm}
 
 \subsubsection{Comparison}
 
+We compared the two algorithms on the base of three criterions :
+\begin{itemize}
+\item precision of results on a cosinus profile, distorted with noise,
+\item number of operations,
+\item complexity to implement an FPGA version.
+\end{itemize}
+
+For the first item, we produced a matlab version of each algorithm,
+running with double precision values. The profile was generated for
+about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1),
+phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$,
+step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of
+$\frac{\pi}{1024}$ on phase computation. Current A. Meister and
+M. Favre experiments show a ratio of 50 between variation of phase and
+the deflection of a lever. Thus, the maximal error due to
+discretization correspond to an error of 0.15nm on the lever
+deflection, which is smaller than the best precision they achieved,
+i.e. 0.3nm.
+
+For each test, we add some noise to the profile : each group of two
+pixels has its intensity added to a random number picked in $[-N,N]$
+(NB: it should be noticed that picking a new value for each pixel does
+not distort enough the profile). The absolute error on the result is
+evaluated by comparing the difference between the reference and
+computed phase, out of $2\pi$, expressed in percents. That is : $err =
+100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$.
+
+Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$.
+
+\begin{table}[ht]
+  \begin{center}
+    \begin{tabular}{|c|c|c|c|c|}
+      \hline
+  & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5}
+  noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline
+  0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline
+  2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline
+  5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline
+  7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline
+  10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline
+  15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline
+  30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline
+
+\end{tabular}
+\caption{Error (in \%) for cosinus profiles, with noise.}
+\label{tab:algo_prec}
+\end{center}
+\end{table}
+
+These results show that the two algorithms are very close, with a
+slight advantage for LSQ. Furthemore, both behave very well against
+noise. Assuming the experimental ratio of 50 (see above), an error of
+1 percent on phase correspond to an error of 0.5nm on the lever
+deflection, which is very close to the best precision.
+
+Obviously, it is very hard to predict which level of noise will be
+present in real experiments and how it will distort the
+profiles. Nevertheless, we can see on figure \ref{fig:noise20} the
+profile with $N=10$ that leads to the biggest error. It is a bit
+distorted, with pikes and straight/rounded portions, and relatively
+close to most of that come from experiments. Figure \ref{fig:noise60}
+shows a sample of worst profile for $N=30$. It is completly distorted,
+largely beyond the worst experimental ones. 
+
+\begin{figure}[ht]
+\begin{center}
+  \includegraphics[width=9cm]{intens-noise20-spl}
+\end{center}
+\caption{Sample of worst profile for N=10}
+\label{fig:noise20}
+\end{figure}
+
+\begin{figure}[ht]
+\begin{center}
+  \includegraphics[width=9cm]{intens-noise60-lsq}
+\end{center}
+\caption{Sample of worst profile for N=30}
+\label{fig:noise60}
+\end{figure}
+
+The second criterion is relatively easy to estimate for LSQ and harder
+for SPL because of $atan$ operation. In both cases, it is proportional
+to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for
+SPL on $N = k\times M$, i.e. the number of interpolated points. 
+
+We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are
+already in lookup tables and only arithmetic operations (+, -, *, /)
+are taken account. Translating the two algorithms in C code, we obtain
+about 400 operations for LSQ and 1340 (plus the unknown for $atan$)
+for SPL. Even if the result is largely in favor of LSQ, we can notice
+that executing the C code (compiled with \tt{-O3}) of SPL on an
+2.33GHz Core 2 Duo only takes 6.5µs in average, which is under our
+desing goals. The final decision is thus driven by the third criterion.\\
+
+The Spartan 6 used in our architecture has hard constraint : it has no
+floating point units. Thus, all computations have to be done with
+integers. 
+
+
+
 \subsection{VHDL design paradigms}
 
 \subsection{VHDL implementation}