X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/dmems12.git/blobdiff_plain/378804e7fc26018b70fc8beafbb03b16a0e536f2..76b46095d99d4f535bfac76daa38cf3b31a477b3:/dmems12.tex diff --git a/dmems12.tex b/dmems12.tex index 806e509..647111e 100644 --- a/dmems12.tex +++ b/dmems12.tex @@ -1,7 +1,9 @@ -\documentclass[12pt]{article} + +\documentclass[10pt, conference, compsocconf]{IEEEtran} %\usepackage{latex8} %\usepackage{times} -\usepackage[latin1]{inputenc} +\usepackage[utf8]{inputenc} +%\usepackage[cyr]{aeguill} %\usepackage{pstricks,pst-node,pst-text,pst-3d} %\usepackage{babel} \usepackage{amsmath} @@ -16,34 +18,45 @@ \usepackage{fullpage} \usepackage{fancybox} +\usepackage[ruled,lined,linesnumbered]{algorithm2e} + %%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX commands. \newcommand{\noun}[1]{\textsc{#1}} \newcommand{\tab}{\ \ \ } -%%%%%%%%%%%%%%%%%%%%%%%%%%%% my bib path. + + +\begin{document} + + +%% \author{\IEEEauthorblockN{Authors Name/s per 1st Affiliation (Author)} +%% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\ +%% line 2: name of organization, acronyms acceptable\\ +%% line 3: City, Country\\ +%% line 4: Email: name@xyz.com} +%% \and +%% \IEEEauthorblockN{Authors Name/s per 2nd Affiliation (Author)} +%% \IEEEauthorblockA{line 1 (of Affiliation): dept. name of organization\\ +%% line 2: name of organization, acronyms acceptable\\ +%% line 3: City, Country\\ +%% line 4: Email: name@xyz.com} +%% } + \title{Using FPGAs for high speed and real time cantilever deflection estimation} +\author{\IEEEauthorblockN{Raphaël Couturier\IEEEauthorrefmark{1}, Stéphane Domas\IEEEauthorrefmark{1}, Gwenhaël Goavec-Merou\IEEEauthorrefmark{2} and Michel Lenczner\IEEEauthorrefmark{2}} +\IEEEauthorblockA{\IEEEauthorrefmark{1}FEMTO-ST, DISC, University of Franche-Comte, Belfort, France\\ +\{raphael.couturier,stephane.domas\}@univ-fcomte.fr} +\IEEEauthorblockA{\IEEEauthorrefmark{2}FEMTO-ST, Time-Frequency, University of Franche-Comte, Besançon, France\\ +\{michel.lenczner@utbm.fr,gwenhael.goavec@trabucayre.com} +} + + -\author{ Raphaël COUTURIER\\ -Laboratoire d'Informatique -de l'Universit\'e de Franche-Comt\'e, \\ -BP 527, \\ -90016~Belfort CEDEX, France\\ - \and Stéphane Domas\\ -Laboratoire d'Informatique -de l'Universit\'e de Franche-Comt\'e, \\ -BP 527, \\ -90016~Belfort CEDEX, France\\ - \and Gwenhaël Goavec\\ -?? -?? \\ -??, \\ -??\\} -\begin{document} \maketitle @@ -58,34 +71,100 @@ BP 527, \\ \section{Introduction} -%% blabla + +Cantilevers are used inside atomic force microscope (AFM) which provides high +resolution images of surfaces. Several technics have been used to measure the +displacement of cantilevers in litterature. For example, it is possible to +determine accurately the deflection with different mechanisms. +In~\cite{CantiPiezzo01}, authors used piezoresistor integrated into the +cantilever. Nevertheless this approach suffers from the complexity of the +microfabrication process needed to implement the sensor in the cantilever. +In~\cite{CantiCapacitive03}, authors have presented an cantilever mechanism +based on capacitive sensing. This kind of technic also involves to instrument +the cantiliver which result in a complex fabrication process. + +In this paper our attention is focused on a method based on interferometry to +measure cantilevers' displacements. In this method cantilevers are illuminated +by an optic source. The interferometry produces fringes on each cantilevers +which enables to compute the cantilever displacement. In order to analyze the +fringes a high speed camera is used. Images need to be processed quickly and +then a estimation method is required to determine the displacement of each +cantilever. In~\cite{AFMCSEM11}, the authors have used an algorithm based on +spline to estimate the cantilevers' positions. + + The overall process gives +accurate results but all the computation are performed on a standard computer +using labview. Consequently, the main drawback of this implementation is that +the computer is a bootleneck in the overall process. In this paper we propose to +use a method based on least square and to implement all the computation on a +FGPA. + +The remainder of the paper is organized as follows. Section~\ref{sec:measure} +describes more precisely the measurement process. Our solution based on the +least square method and the implementation on FPGA is presented in +Section~\ref{sec:solus}. Experimentations are described in +Section~\ref{sec:results}. Finally a conclusion and some perspectives are +presented. + + + %% quelques ref commentées sur les calculs basés sur l'interférométrie -\section{Measurement architecture} -\label{sec:measure-archi} +\section{Measurement principles} +\label{sec:measure} + + + + + + + +\subsection{Architecture} +\label{sec:archi} %% description de l'architecture générale de l'acquisition d'images %% avec au milieu une unité de traitement dont on ne précise pas ce %% qu'elle est. -%% image tirée des expériences. - -\section{Design goals} -\label{sec:goals} - -%% objectifs en terme de rapidité et de précision, avec en vue l'ajout -%% du contrôle => l'unité de traitement qui s'impose est un FPGA => -%% algo adapté au FPGA. +In order to develop simple, cost effective and user-friendly cantilever arrays, +authors of ~\cite{AFMCSEM11} have developped a system based of +interferometry. In opposition to other optical based systems, using a laser beam +deflection scheme and sentitive to the angular displacement of the cantilever, +interferometry is sensitive to the optical path difference induced by the +vertical displacement of the cantilever. + +The system build by authors of~\cite{AFMCSEM11} has been developped based on a +Linnick interferomter~\cite{Sinclair:05}. It is illustrated in +Figure~\ref{fig:AFM}. A laser diode is first split (by the splitter) into a +reference beam and a sample beam that reachs the cantilever array. In order to +be able to move the cantilever array, it is mounted on a translation and +rotational hexapod stage with five degrees of freedom. The optical system is +also fixed to the stage. Thus, the cantilever array is centered in the optical +system which can be adjusted accurately. The beam illuminates the array by a +microscope objective and the light reflects on the cantilevers. Likewise the +reference beam reflects on a movable mirror. A CMOS camera chip records the +reference and sample beams which are recombined in the beam splitter and the +interferogram. At the beginning of each experiment, the movable mirror is +fitted manually in order to align the interferometric fringes approximately +parallel to the cantilevers. When cantilevers move due to the surface, the +bending of cantilevers produce movements in the fringes that can be detected +with the CMOS camera. Finally the fringes need to be +analyzed. In~\cite{AFMCSEM11}, the authors used a LabView program to compute the +cantilevers' movements from the fringes. + +\begin{figure} +\begin{center} +\includegraphics[width=\columnwidth]{AFM} +\end{center} +\caption{schema of the AFM} +\label{fig:AFM} +\end{figure} -%% peut etre que cette section peut être déplacée en intro ... à voir. -\section{Proposed solution} -\label{sec:solus} +%% image tirée des expériences. \subsection{Cantilever deflection estimation} +\label{sec:deflest} -%% => faire de l'interpolation de signal sinusoidal -%% descriptif rapide des deux méthodes : splines et moindres carrés As shown on image \ref{img:img-xp}, each cantilever is covered by interferometric fringes. The fringes will distort when cantilevers are deflected. Estimating the deflection is done by computing this @@ -113,19 +192,144 @@ where $x$ is the position of a pixel in its associated segment. The global method consists in two main sequences. The first one aims to determin the frequency $f$ of each profile with an algorithm based -on spline interpolation (see below). It also computes the coefficient -used for unwrapping the phase. The second one is the acquisition loop, -while which images are taken at regular time steps. For each image, -the phase $\theta$ of all profiles is computed to obtain, after -unwrapping, the deflection of cantilevers. - -This phase computation is obviously the bottle-neck of the whole -process. For example, if we consider the camera actually in use, an -exposition time of 2.5ms for $1024\times 1204$ pixels seems the -minimum that can be reached. For a $10\times 10$ cantilever array, if -we neglect the time to extract pixels, it implies that computing the -deflection of a single cantilever should take less than 25$µ$s, which is -quite small. +on spline interpolation (see section \ref{algo-spline}). It also +computes the coefficient used for unwrapping the phase. The second one +is the acquisition loop, while which images are taken at regular time +steps. For each image, the phase $\theta$ of all profiles is computed +to obtain, after unwrapping, the deflection of +cantilevers. Originally, this computation was also done with an +algorithm based on spline. This article proposes a new version based +on a least square method. + +\subsection{Design goals} +\label{sec:goals} + +The main goal is to implement a computing unit to estimate the +deflection of about $10\times10$ cantilevers, faster than the stream of +images coming from the camera. The accuracy of results must be close +to the maximum precision ever obtained experimentally on the +architecture, i.e. 0.3nm. Finally, the latency between an image +entering in the unit and the deflections must be as small as possible +(NB : future works plan to add some control on the cantilevers).\\ + +If we put aside some hardware issues like the speed of the link +between the camera and the computation unit, the time to deserialize +pixels and to store them in memory, ... the phase computation is +obviously the bottle-neck of the whole process. For example, if we +consider the camera actually in use, an exposition time of 2.5ms for +$1024\times 1204$ pixels seems the minimum that can be reached. For +100 cantilevers, if we neglect the time to extract pixels, it implies +that computing the deflection of a single +cantilever should take less than 25$\mu$s, thus 12.5$\mu$s by phase.\\ + +In fact, this timing is a very hard constraint. Let consider a very +small programm that initializes twenty million of doubles in memory +and then does 1000000 cumulated sums on 20 contiguous values +(experimental profiles have about this size). On an intel Core 2 Duo +E6650 at 2.33GHz, this program reaches an average of 155Mflops. + +%%Itimplies that the phase computation algorithm should not take more than +%%$155\times 12.5 = 1937$ floating operations. For integers, it gives $3000$ operations. + +Obviously, some cache effects and optimizations on +huge amount of computations can drastically increase these +performances : peak efficiency is about 2.5Gflops for the considered +CPU. But this is not the case for phase computation that used only few +tenth of values.\\ + +In order to evaluate the original algorithm, we translated it in C +language. Profiles are read from a 1Mo file, as if it was an image +stored in a device file representing the camera. The file contains 100 +profiles of 21 pixels, equally scattered in the file. We obtained an +average of 10.5$\mu$s by profile (including I/O accesses). It is under +are requirements but close to the limit. In case of an occasional load +of the system, it could be largely overtaken. A solution would be to +use a real-time operating system but another one to search for a more +efficient algorithm. + +But the main drawback is the latency of such a solution : since each +profile must be treated one after another, the deflection of 100 +cantilevers takes about $200\times 10.5 = 2.1$ms, which is inadequate +for an efficient control. An obvious solution is to parallelize the +computations, for example on a GPU. Nevertheless, the cost to transfer +profile in GPU memory and to take back results would be prohibitive +compared to computation time. It is certainly more efficient to +pipeline the computation. For example, supposing that 200 profiles of +20 pixels can be pushed sequentially in the pipelined unit cadenced at +a 100MHz (i.e. a pixel enters in the unit each 10ns), all profiles +would be treated in $200\times 20\times 10.10^{-9} =$ 40$\mu$s plus +the latency of the pipeline. This is about 500 times faster than +actual results.\\ + +For these reasons, an FPGA as the computation unit is the best choice +to achieve the required performance. Nevertheless, passing from +a C code to a pipelined version in VHDL is not obvious at all. As +explained in the next section, it can even be impossible because of +some hardware constraints specific to FPGAs. + + +\section{Proposed solution} +\label{sec:solus} + +Project Oscar aims to provide an hardware and software architecture to +estimate and control the deflection of cantilevers. The hardware part +consists in a high-speed camera, linked on an embedded board hosting +FPGAs. By the way, the camera output stream can be pushed directly +into the FPGA. The software part is mostly the VHDL code that +deserializes the camera stream, extracts profile and computes the +deflection. Before focusing on our work to implement the phase +computation, we give some general informations about FPGAs and the +board we use. + +\subsection{FPGAs} + +A field-programmable gate array (FPGA) is an integrated circuit designed to be +configured by the customer. A hardware description language (HDL) is used to +configure a FPGA. FGPAs are composed of programmable logic components, called +logic blocks. These blocks can be configured to perform simple (AND, XOR, ...) +or complex combinational functions. Logic blocks are interconnected by +reconfigurable links. Modern FPGAs contains memory elements and multipliers +which enables to simplify the design and increase the speed. As the most complex +operation operation on FGPAs is the multiplier, design of FGPAs should not used +complex operations. For example, a divider is not an available operation and it +should be programmed using simple components. + +FGPAs programming is very different from classic processors programming. When +logic block are programmed and linked to performed an operation, they cannot be +reused anymore. FPGA are cadenced more slowly than classic processors but they can +performed pipelined as well as parallel operations. A pipeline provides a way +manipulate data quickly since at each clock top to handle a new data. However, +using a pipeline consomes more logics and components since they are not +reusable, nevertheless it is probably the most efficient technique on FPGA. +Parallel operations can be used in order to manipulate several data +simultaneously. When it is possible, using a pipeline is a good solution to +manipulate new data at each clock top and using parallelism to handle +simultaneously several data streams. + +%% parler du VHDL, synthèse et bitstream +\subsection{The board} + +The board we use is designed by the Armadeus compagny, under the name +SP Vision. It consists in a development board hosting a i.MX27 ARM +processor (from Freescale). The board includes all classical +connectors : USB, Ethernet, ... A Flash memory contains a Linux kernel +that can be launched after booting the board via u-Boot. + +The processor is directly connected to a Spartan3A FPGA (from Xilinx) +via its special interface called WEIM. The Spartan3A is itself +connected to a Spartan6 FPGA. Thus, it is possible to develop programs +that communicate between i.MX and Spartan6, using Spartan3 as a +tunnel. By default, the WEIM interface provides a clock signal at +100MHz that is connected to dedicated FPGA pins. + +The Spartan6 is an LX100 version. It has 15822 slices, equivalent to +101261 logic cells. There are 268 internal block RAM of 18Kbits, and +180 dedicated multiply-adders (named DSP48), which is largely enough +for our project. + +Some I/O pins of Spartan6 are connected to two $2\times 17$ headers +that can be used as user wants. For the project, they will be +connected to the interface card of the camera. \subsection{Considered algorithms} @@ -137,7 +341,7 @@ classical least square method but suppose that frequency is already known. \subsubsection{Spline algorithm} - +\label{sec:algo-spline} Let consider a profile $P$, that is a segment of $M$ pixels with an intensity in gray levels. Let call $I(x)$ the intensity of profile in $x \in [0,M[$. @@ -146,7 +350,7 @@ At first, only $M$ values of $I$ are known, for $x = 0, 1, \ldots,M-1$. A normalisation allows to scale known intensities into $[-1,1]$. We compute splines that fit at best these normalised intensities. Splines are used to interpolate $N = k\times M$ points -(typically $k=3$ is sufficient), within $[0,M[$. Let call $x^s$ the +(typically $k=4$ is sufficient), within $[0,M[$. Let call $x^s$ the coordinates of these $N$ points and $I^s$ their intensities. In order to have the frequency, the mean line $a.x+b$ (see equation \ref{equ:profile}) of $I^s$ is @@ -158,12 +362,15 @@ The phase is computed via the equation : \theta = atan \left[ \frac{\sum_{i=0}^{N-1} sin(2\pi f x^s_i) \times I^s(x^s_i)}{\sum_{i=0}^{N-1} cos(2\pi f x^s_i) \times I^s(x^s_i)} \right] \end{equation} -Two things can be noticed. Firstly, the frequency could also be -obtained using the derivates of spline equations, which only implies -to solve quadratic equations. Secondly, frequency of each profile is -computed a single time, before the acquisition loop. Thus, $sin(2\pi f -x^s_i)$ and $cos(2\pi f x^s_i)$ could also be computed before the loop, which leads to a -much faster computation of $\theta$. +Two things can be noticed : +\begin{itemize} +\item the frequency could also be obtained using the derivates of + spline equations, which only implies to solve quadratic equations. +\item frequency of each profile is computed a single time, before the + acquisition loop. Thus, $sin(2\pi f x^s_i)$ and $cos(2\pi f x^s_i)$ + could also be computed before the loop, which leads to a much faster + computation of $\theta$. +\end{itemize} \subsubsection{Least square algorithm} @@ -218,32 +425,261 @@ Several points can be noticed : computed. \item The simplest method to find the good $\theta$ is to discretize - $[-\pi,\pi]$ in $N$ steps, and to search which step leads to the + $[-\pi,\pi]$ in $nb_s$ steps, and to search which step leads to the result closest to zero. By the way, three other lookup tables can also be computed before the loop : -\[ sin \theta, cos \theta, \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \] +\[ sin \theta, cos \theta, \] -\item This search can be very fast using a dichotomous process in $log_2(N)$ +\[ \left[ cos 2\theta \sum_{i=0}^{M-1} sin(4\pi f.i) + sin 2\theta \sum_{i=0}^{M-1} cos(4\pi f.i)\right] \] -\end{itemize} - -\subsubsection{Comparison} +\item This search can be very fast using a dichotomous process in $log_2(nb_s)$ -\subsection{FPGA constraints} - -%% contraintes imposées par le FPGA : algo pipeline/parallele, pas d'op math complexe, ... +\end{itemize} -\subsection{Least square algorithm} +Finally, the whole summarizes in an algorithm (called LSQ in the following) in two parts, one before and one during the acquisition loop : +\begin{algorithm}[h] +\caption{LSQ algorithm - before acquisition loop.} +\label{alg:lsq-before} + + $M \leftarrow $ number of pixels of the profile\\ + I[] $\leftarrow $ intensities of pixels\\ + $f \leftarrow $ frequency of the profile\\ + $s4i \leftarrow \sum_{i=0}^{M-1} sin(4\pi f.i)$\\ + $c4i \leftarrow \sum_{i=0}^{M-1} cos(4\pi f.i)$\\ + $nb_s \leftarrow $ number of discretization steps of $[-\pi,\pi]$\\ + + \For{$i=0$ to $nb_s $}{ + $\theta \leftarrow -\pi + 2\pi\times \frac{i}{nb_s}$\\ + lut$_s$[$i$] $\leftarrow sin \theta$\\ + lut$_c$[$i$] $\leftarrow cos \theta$\\ + lut$_A$[$i$] $\leftarrow cos 2 \theta \times s4i + sin 2 \theta \times c4i$\\ + lut$_{sfi}$[$i$] $\leftarrow sin (2\pi f.i)$\\ + lut$_{cfi}$[$i$] $\leftarrow cos (2\pi f.i)$\\ + } +\end{algorithm} + +\begin{algorithm}[ht] +\caption{LSQ algorithm - during acquisition loop.} +\label{alg:lsq-during} + + $\bar{x} \leftarrow \frac{M-1}{2}$\\ + $\bar{y} \leftarrow 0$, $x_{var} \leftarrow 0$, $xy_{covar} \leftarrow 0$\\ + \For{$i=0$ to $M-1$}{ + $\bar{y} \leftarrow \bar{y} + $ I[$i$]\\ + $x_{var} \leftarrow x_{var} + (i-\bar{x})^2$\\ + } + $\bar{y} \leftarrow \frac{\bar{y}}{M}$\\ + \For{$i=0$ to $M-1$}{ + $xy_{covar} \leftarrow xy_{covar} + (i-\bar{x}) \times (I[i]-\bar{y})$\\ + } + $slope \leftarrow \frac{xy_{covar}}{x_{var}}$\\ + $start \leftarrow y_{moy} - slope\times \bar{x}$\\ + \For{$i=0$ to $M-1$}{ + $I[i] \leftarrow I[i] - start - slope\times i$\\ + } + + $I_{max} \leftarrow max_i(I[i])$, $I_{min} \leftarrow min_i(I[i])$\\ + $amp \leftarrow \frac{I_{max}-I_{min}}{2}$\\ + + $Is \leftarrow 0$, $Ic \leftarrow 0$\\ + \For{$i=0$ to $M-1$}{ + $Is \leftarrow Is + I[i]\times $ lut$_{sfi}$[$i$]\\ + $Ic \leftarrow Ic + I[i]\times $ lut$_{cfi}$[$i$]\\ + } + + $\delta \leftarrow \frac{nb_s}{2}$, $b_l \leftarrow 0$, $b_r \leftarrow \delta$\\ + $v_l \leftarrow -2.I_s - amp.$lut$_A$[$b_l$]\\ + + \While{$\delta >= 1$}{ + + $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\ + + \If{$!(v_l < 0$ and $v_r >= 0)$}{ + $v_l \leftarrow v_r$ \\ + $b_l \leftarrow b_r$ \\ + } + $\delta \leftarrow \frac{\delta}{2}$\\ + $b_r \leftarrow b_l + \delta$\\ + } + \uIf{$!(v_l < 0$ and $v_r >= 0)$}{ + $v_l \leftarrow v_r$ \\ + $b_l \leftarrow b_r$ \\ + $b_r \leftarrow b_l + 1$\\ + $v_r \leftarrow 2.[ Is.$lut$_c$[$b_r$]$ + Ic.$lut$_s$[$b_r$]$ ] - amp.$lut$_A$[$b_r$]\\ + } + \Else { + $b_r \leftarrow b_l + 1$\\ + } + + \uIf{$ abs(v_l) < v_r$}{ + $b_{\theta} \leftarrow b_l$ \\ + } + \Else { + $b_{\theta} \leftarrow b_r$ \\ + } + $\theta \leftarrow \pi\times \left[\frac{2.b_{ref}}{nb_s}-1\right]$\\ + +\end{algorithm} -%% description précise -%% avantage sur FPGA +\subsubsection{Comparison} -\subsection{VDHL design paradigms} +We compared the two algorithms on the base of three criterions : +\begin{itemize} +\item precision of results on a cosinus profile, distorted with noise, +\item number of operations, +\item complexity to implement an FPGA version. +\end{itemize} -\subsection{VDHL implementation} +For the first item, we produced a matlab version of each algorithm, +running with double precision values. The profile was generated for +about 34000 different values of period ($\in [3.1, 6.1]$, step = 0.1), +phase ($\in [-3.1 , 3.1]$, step = 0.062) and slope ($\in [-2 , 2]$, +step = 0.4). For LSQ, $nb_s = 1024$, which leads to a maximal error of +$\frac{\pi}{1024}$ on phase computation. Current A. Meister and +M. Favre experiments show a ratio of 50 between variation of phase and +the deflection of a lever. Thus, the maximal error due to +discretization correspond to an error of 0.15nm on the lever +deflection, which is smaller than the best precision they achieved, +i.e. 0.3nm. + +For each test, we add some noise to the profile : each group of two +pixels has its intensity added to a random number picked in $[-N,N]$ +(NB: it should be noticed that picking a new value for each pixel does +not distort enough the profile). The absolute error on the result is +evaluated by comparing the difference between the reference and +computed phase, out of $2\pi$, expressed in percents. That is : $err = +100\times \frac{|\theta_{ref} - \theta_{comp}|}{2\pi}$. + +Table \ref{tab:algo_prec} gives the maximum and average error for the two algorithms and increasing values of $N$. + +\begin{table}[ht] + \begin{center} + \begin{tabular}{|c|c|c|c|c|} + \hline + & \multicolumn{2}{c|}{SPL} & \multicolumn{2}{c|}{LSQ} \\ \cline{2-5} + noise & max. err. & aver. err. & max. err. & aver. err. \\ \hline + 0 & 2.46 & 0.58 & 0.49 & 0.1 \\ \hline + 2.5 & 2.75 & 0.62 & 1.16 & 0.22 \\ \hline + 5 & 3.77 & 0.72 & 2.47 & 0.41 \\ \hline + 7.5 & 4.72 & 0.86 & 3.33 & 0.62 \\ \hline + 10 & 5.62 & 1.03 & 4.29 & 0.81 \\ \hline + 15 & 7.96 & 1.38 & 6.35 & 1.21 \\ \hline + 30 & 17.06 & 2.6 & 13.94 & 2.45 \\ \hline + +\end{tabular} +\caption{Error (in \%) for cosinus profiles, with noise.} +\label{tab:algo_prec} +\end{center} +\end{table} + +These results show that the two algorithms are very close, with a +slight advantage for LSQ. Furthemore, both behave very well against +noise. Assuming the experimental ratio of 50 (see above), an error of +1 percent on phase correspond to an error of 0.5nm on the lever +deflection, which is very close to the best precision. + +Obviously, it is very hard to predict which level of noise will be +present in real experiments and how it will distort the +profiles. Nevertheless, we can see on figure \ref{fig:noise20} the +profile with $N=10$ that leads to the biggest error. It is a bit +distorted, with pikes and straight/rounded portions, and relatively +close to most of that come from experiments. Figure \ref{fig:noise60} +shows a sample of worst profile for $N=30$. It is completly distorted, +largely beyond the worst experimental ones. + +\begin{figure}[ht] +\begin{center} + \includegraphics[width=9cm]{intens-noise20-spl} +\end{center} +\caption{Sample of worst profile for N=10} +\label{fig:noise20} +\end{figure} + +\begin{figure}[ht] +\begin{center} + \includegraphics[width=9cm]{intens-noise60-lsq} +\end{center} +\caption{Sample of worst profile for N=30} +\label{fig:noise60} +\end{figure} + +The second criterion is relatively easy to estimate for LSQ and harder +for SPL because of $atan$ operation. In both cases, it is proportional +to numbers of pixels $M$. For LSQ, it also depends on $nb_s$ and for +SPL on $N = k\times M$, i.e. the number of interpolated points. + +We assume that $M=20$, $nb_s=1024$, $k=4$, all possible parts are +already in lookup tables and a limited set of operations (+, -, *, /, +<, >) is taken account. Translating the two algorithms in C code, we +obtain about 430 operations for LSQ and 1550 (plus few tenth for +$atan$) for SPL. This result is largely in favor of LSQ. Nevertheless, +considering the total number of operations is not really pertinent for +an FPGA implementation : it mainly depends on the type of operations +and their +ordering. The final decision is thus driven by the third criterion.\\ + +The Spartan 6 used in our architecture has hard constraint : it has no +built-in floating point units. Obviously, it is possible to use some +existing "black-boxes" for double precision operations. But they have +a quite long latency. It is much simpler to exclusively use integers, +with a quantization of all double precision values. Obviously, this +quantization should not decrease too much the precision of +results. Furthermore, it should not lead to a design with a huge +latency because of operations that could not complete during a single +or few clock cycles. Divisions are in this case and, moreover, they +need an varying number of clock cycles to complete. Even +multiplications can be a problem : DSP48 take inputs of 18 bits +maximum. For larger multiplications, several DSP must be combined, +increasing the latency. + +Nevertheless, the hardest constraint does not come from the FPGA +characteristics but from the algorithms. Their VHDL implentation will +be efficient only if they can be fully (or near) pipelined. By the +way, the choice is quickly done : only a small part of SPL can be. +Indeed, the computation of spline coefficients implies to solve a +tridiagonal system $A.m = b$. Values in $A$ and $b$ can be computed +from incoming pixels intensity but after, the back-solve starts with +the lastest values, which breaks the pipeline. Moreover, SPL relies on +interpolating far more points than profile size. Thus, the end +of SPL works on a larger amount of data than the beginning, which +also breaks the pipeline. + +LSQ has not this problem : all parts except the dichotomial search +work on the same amount of data, i.e. the profile size. Furthermore, +LSQ needs less operations than SPL, implying a smaller output +latency. Consequently, it is the best candidate for phase +computation. Nevertheless, obtaining a fully pipelined version +supposes that operations of different parts complete in a single clock +cycle. It is the case for simulations but it completely fails when +mapping and routing the design on the Spartan6. By the way, +extra-latency is generated and there must be idle times between two +profiles entering into the pipeline. + +%%Before obtaining the least bitstream, the crucial question is : how to +%%translate the C code the LSQ into VHDL ? + + +%\subsection{VHDL design paradigms} + +\section{Experimental tests} + +\subsection{VHDL implementation} + +% - ecriture d'un code en C avec integer +% - calcul de la taille max en bit de chaque variable en fonction de la quantization. +% - tests de quantization : équilibre entre précision et contraintes FPGA +% - en parallèle : simulink et VHDL à la main +% +\subsection{Simulation} + +% ghdl + gtkwave +% au mieux : une phase tous les 33 cycles, latence de 95 cycles. +% mais routage/placement impossible. +\subsection{Bitstream creation} + +% pas fait mais prévision d'une sortie tous les 480ns avec une latence de 1120 -\section{Experimental results} \label{sec:results}