Chapter 1

Distributed Average Consensus in Large
Asynchronous Sensor Networks

Jacques M. Bahi, Arnaud Giersh, Abdallah Makhoul and Ahmedtefaoui

Abstract One important issue in sensor networks is parameters diimieased on
nodes measurements. Several approaches have been proptheeliterature (cen-
tralized and distributed ones). Because of the particud&yrenvironment, usually
observed in sensor networks, centralized approaches areffivdent and present
several drawbacks (important energy consumption, routifiymation maintain-
ing, etc.). In distributed approaches however, nodes egehdata with their neigh-
bours and update their own data accordingly until reachmyergence to the right
parameters estimate. These approaches, although prarnte mbustness against
nodes failure, does not address important issues as coroatiom delay tolerance
and asynchronism (i.e., they require that nodes remairhsgnous in communica-
tion and processing). In this chapter, we tackle these ssbyaroposing a totally
asynchronous scheme that is communication delay tolefamtextensive simula-
tions series we conducted have showed the effectiveneas approach.

1.1 Introduction

Recent years have witnessed significant advances in wsredgsor networks which
emerge as one of the most promising technologies for thehtury [1]. In fact,
they present huge potential in several domains ranging fieaith care applica-
tions to military applications. In general, the primary ettjve of a wireless sensor
network is to collect data from the monitored area and tostrahit to a base sta-
tion (sink) for processing. Many applications envisionedsensor networks consist
of lowpower and lowcost nodes. For instance, applicatioreh s data fusion and
distributed coordination require distributed functiomgmutation/parameter estima-
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tion under topology changes and power constraints. Digiibaverage consensus,
in ad hoc networks, is an important issue in distributed exgient and synchro-
nization problems [2] and is also a central topic for loadabaing (with divisible
tasks) in parallel computers [3]. More recently, it has &smd applications in dis-
tributed coordination of mobile autonomous agents [4, H]distributed data fusion
in sensor networks [6, 7]. In this chapter, we focus on a paldr class of iterative
algorithms based on information diffusion for average emssis, widely used in the
applications cited above. Each node broadcasts its datarteighbours and updates
its estimation according to a weighted sum of the receivea. da

To illustrate the average consensus problem, let us cartkidexample of petrol
tanks. We suppose that in a oil station we have large numkanks$ related to each
other in mechanical and sensor networks. The role of seistysiectect the level
of each oil tank. The objective of this application is to kabp level of oil the
same in all tanks. When a sensor node detects some changgeteirelt it launchs
an average consenus processus to calculate the averabeflaltéranks and then
thanks to the mechanical network an oil transfer operasotione to regulate the
level. The average consensus process is used to computeeitsgea level, each
sensor node exchanges its information with its neighboridositive manner until
the convergence to the average consensus.

To calculate the average consensus, many distributed agipes have been pro-
posed. On the other hand, these existing approaches psemaetinsufficiencies
(see next section). For instance, the flooding approachresgiinat each node holds
a relatively important storage space. Other approaches thalunpractical assump-
tion of communication synchronization between sensor§]&nd do not tolerate
communication delays neither nodes failures. These weakiseemain very restric-
tive in sensor network environment where on one hand nodegrane to frequent
failures as they are driven by batteries and on the other hamdnunications are
almost unreliable and prone to delays. Moreover, theseitvitaktive features lead,
in addition to nodes mobility, to dynamically changing netlwtopologies.

In order to overcome the above mentioned weaknesses, wega@nd inves-
tigate in this chapter a novel approach for data fusion irsgenetworks. The key
idea behind is to develop a consensus algorithm that alldw®des of the sensor
network to track the average of their previous measureniéng 5, 9, 10, 11, 12,
13, 14]. More specifically, our proposition is based oriranetwork asynchronous
iterative algorithm run by each node and in which nhodes communicate with only
their immediate neighbours.

In this context, let us discuss the primary contributiontghif chapter:

e Our approach does not require any synchronization betwedasnas it is basi-
cally asynchronous. In other words, each hode communidatelsta to its in-
stantaneous neighbours at its own "rhythm” i.e., no del@ps/ben nodes are ob-
served in our approach. This is particularly important lisean the synchronous
schemes, as the one reported in [8], any delay between twesniodhe network
will result in a global delay over the whole network sinceth# nodes are syn-
chronous. This is particularly limitative in heterogenssensor networks where
nodes have different processing speeds.
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e As a consequence of its asynchronism, our proposed apptotly tolerates
communication delays. This feature is of an important mégeause sensor net-
works, as it is commonly known, are prone to environmentaiupeations [15]
when communication delays occur more frequently.

e The proposed distributed algorithm, as proven theoretindl validated experi-
mentally, supports dynamic topologies and guaranteeg#tht sensor node will
converge to the average consensus.

However, as for any iterative approach, our approach cauider certain en-
vironmental conditions, consume more network resourcesinlgn communica-
tions, than other centralized approaches, specificallpémféct environment” where
nodes and communications are totally reliable and the n&ttepology is fixed.
Nevertheless, we note here that our concern is more focusédaisy environ-
ment” in which communication unreliability and nodes failures asual.

1.2 Overview of Averaging Problem in Sensor Networks

The first and the simplest approach for distributed averatimation in sensor net-
works is calledloodingapproach [8]. In this approach, each sensor node broadcasts
all its stored and received data to its neighbours. After dewbach node will hold
all the data of the network and acts as a fusion center to ctentpe estimate of the
unknown parameter. This technique has however severalv@dintages [8]. First,
it results in huge amount of exchanged duplicate messadueshwepresents a real
limitation in environments like sensor networks. Secorahding requires that each
node stores at least one message per node (in order to cothpuagerage). This
could lead to an important storage memory requirement ie cds large sensor
network with the associated operations (reads and wriaslly, it is obvious that
those requirements will consume much resources leading important decrease
of the whole network lifetime.

Alternatively, in [16] the authors proposed a scalable sefission scenario that
performs fusion of sensor measurements combined with lde&han filtering.
They developed a distributed algorithm that allows the senedes to compute the
average of all of their measurements. It is worthy to notenieny other sensor data
fusion approaches are based on Kalman filters and mobildésaéh 9, 18, 12, 13].

An iterative method for distributed data fusion in sensdwoeks based on the
calculation of an average consensusas been proposed in [8]. The authors con-
sider that every node takes a noisy measurement of the umkparameter. Each
node broadcasts its data to its neighbours and updatediiteaden according to a
weighted sum of the received data. In this scheme all the agmwations are direct
ones.

1 In the rest of the paper, the terms “average consensus” and "paraestimation” are used to
denote the same mechanism of finding an estimate of the unknown pgaraverage.
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Although the above mentioned works and other existing dasioh scenar-
ios guarantee some level of robustness to nodes failuresdymaimic topology
changes [8, 16, 17, 11, 5], they either put some unpractgsalraptions like nodes
synchronization or do not support practical issues as themanication delays.

To the best of our knowledge, the above issues which arersgtyeimportant,
especially in noisy environments, are not taken into actauprevious data fu-
sion approaches. In this chapter, we present an asynctsatata fusion scheme,
particularly tailored to perturbed sensor networks. ltues on a distributed iter-
ative algorithm for calculating averages over asynchrergensor networks. The
sensor nodes exchange and update their data by the mean aflaagesum in
order to achieve the average consensus. The suggesteiiheigdoes not rely on
synchronization between the nodes nor does it require aoylielge of the global
topology. To round up, the convergence of the proposed ithgoris proved in a
general asynchronous environment.

1.3 Asynchronous Distributed Consensus with messages loss

1.3.1 Problem Formulation

A sensor network is modelled as a connected undirected graphV, E). The set

of nodes is denoted by (the set of vertices), and the links between nodesby
(the set of edges). The nodes are labelled 1,2,...,n, and a link between two
nodesi andj is denoted by(i, j). The dynamic topology changes are represented
by the time varying grapli*(t) = (V, E(t)), whereE(t) is the set of active edges
at time¢. The set of neighbours of nodeat timet is denoted byV;(t) = {j €

V| (i,5) € E(t)}, and the degree (number of neighbours) of nodétimet by
ni(t) = |Ni(t)].

Each node takes initial measurement For sake of simplicity let us suppose
thatz; € R. Then,z will refer to the vector whoséth component ig; in case we
are concerned with several parameters. Each node on thenketigo maintains a
dynamic state; (t) € R which is initially set tox;(0) = z;.

Intuitively each node’s state,(t) is its current estimate of the average value
>, zi/n. The goal of the averaging algorithm, is to let all the statg3) go
to the average ;" , z;/n, ast — oo. This will be done through data exchange
between neighbouring nodes where each node at every tinaiote: performs
weighted sum of the received data as follows [5, 8]:

it +1) = ai(t) = Y oui(D(@i(t) —x;(1)i=1,...,n. (L)
JEN;
Whereq;;(t) is the weight one;(¢) at nodei, anda;;(t) = 0 for j & N;(¢).
In order to handle communication delays, we consider thatatt a nodei gets
the state of its neighboyrat timed’ (¢), where0 < d’(t) <t
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dj(t) represents the transmission delay between noded ;. Therefore, let us
denoter’ (t) = x;(d%(t)) € R the state of nodg at timed’;(t), received at time
by node:. Then, we defined the extended neighbourhood of riatdimet as the
set:

Ni(t)y={j| 3di(t) € {t - B+1,...,t} ,such thati € N;(d}(t))};

note thatV; (t) C N,(t).

The problem, as for any distributed algorithmic approashhéw and under
which conditions, will we ensure convergence of the progadgorithm? In other
terms, are we sure that all the node;swill converge to the right estimate of the un-
known parameter average value? Also, how can we choose theetersy; ; (t) so
to improve the convergence speed and the quality of theatbastimate? Hereafter
we present and analyse our proposal. We used the notatiomided in Table 1.1

Notation Description
G(t) the time varying graph
N;(t) the set of neighbors of nodeat timet
Zi the initial measurement of node
zi(t) the dynamic state of node
d(t) the transmission delay between nodesd;

zh(t) = z;(d5(t)) the state of nodg at timet — d (¢)

(
N;(t) the extended neighborhood ot timet
si5(t) the data sent byto ;5 at timet¢
r5;(t) the data received byfrom j at timet¢

Table 1.1 Notations

1.3.2 Asynchronous scheme

Our algorithm to compute the average consensus over th@reiswased on infor-
mation diffusion i.e., each node takes a measurement andctiwperates with its
neighbours in a diffusion manner to estimate the averagd tfeacollected infor-
mation. It is inspired from the work of Bertsekas and TsltsiKL9, section 7.4] on
load balancing and extends it to cope with dynamic topokgied messages loss
and delays. Algorithm 1 presents the main steps of our pexpakyorithm.
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Algorithm 1 The General Algorithm.

1: Each node maintains an instantaneous stgtg € R, and at = 0 (after all nodes have taken
the measurement), each node initializes its state @ = z;.
2: At every step each node:

compares its state to the states of its neighbours;

chooses and computas;(t). They have to be chosen carefully in order to ensure the
convergence of the algorithm;

diffuses its information;

receives the information sent by its neighbouyst);

updates its state with a combination of its own state and thessdidifts instantaneous and
extended neighboursV; (t)) as follows:

zit+ ) =ai(t)— Y s+ D r(h) (1.2)

JEN;(t) JEN; ()

1.3.3 Theoretical Analysis (Convergence)

We now introduce three assumptions that ensure the comeg# our algorithm.

Assumption 1 There existd3 € N such thatvt > 0,
t — B < dj(t) < t and the union of communication grap Tif_l G(r)is a
connected graph.

This assumption, known as jointly connected condition [, Bnplies that each
nodei is connected to a hodewithin any time interval of lengttB and that the de-
lay between two nodes cannot exce&d®Recall that, a graph is connected if for any
two vertices andj there exists a sequence of edges: ), (k1, k2), - . ., (ki—1, ki),
(ku, )

In Figure 1.1 we show an example of jointly connected graplesnotice that at
t = 1 the graphF; is not connected; the same casedbratt = 2; while the union
G of G1 and@Gs, is a connected graph.

Assumption 2 There existgy > 0,V¢ > 0,
Vi € N,Vj € Ni(t), such thai(z;(t) — x(t)) < si;(t).
(545(t) = 0if (z;(t) < zh(t)) forall j € Ni(t)).
The second assumption postulates that when a natitects a difference be-

tween its state and the states of its neighbours, it thexefmmputes non negligible
si; to all nodesj where(z; (t) > z’(t)).

Assumption 3

zi(t) = Y silt) = 2h(t) + s45(t) (1.3)

kEN,(t)

The third assumption prohibits nodeo compute very large;; which creates a
ping-pong state. Recall that, the ping-pong state is dsteddl when two nodes keep
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Fig. 1.1 Example of jointly connected graphs

sending data to each other back and forth, without ever negegquilibrium. Note
that these two assumptions are similar to assumption 4r@diated in [19, sec-
tion 7.4].

Theorem 1.if the assumptions 1, 2 and 3 are satisfied, Algorithm 1 guaesthat

lim 2 (t) = %Z:gi(O) (1.4)

i.e., all node states converge to the average of the initiehsurements of the
network.

Proof
Letm(t) = min; min,_ p<,<¢ x;(7). Note thatacé«(T) > m(t), Vi, j, t.
Lemma 1 and 2 below can be proven similarly to the lemma of p&gé& and 522
in [19].
t—1
Denote byv;;(t) = >~ (si;(s) —74;(s)) , the data sent byand not yet received

s=0
by j at timet. We suppose that;;(0) = 0. Then by data conservation, we obtain

n

Sz + Do vy :in(m, Vi >0 (1.5)

i=1 JENI(t)

¢From assumption 1 we can conclude that the dat@) in the network before
time ¢ consists in data sent in the interval tifle— B + 1, ...,t — 1}, Sov;;(t) <

Z:—_:t—B-H sij(t), Vnodei, Vj € N;(t).
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Lemma 1. The sequencen(t) is monotone, nondecreasing and converges and
Vi, Vs > 0,

1 t1—to
xi(t+s) > m(t) + () (z;(t) —m(t))

n

Leti € V,to € N, andt > to, j € V, we say that the everif; (¢) occurs if there
existsj € N,(t) such that
o

.’L‘;(f) < m(to) + m

(zi(to) — m(to)) (1.6)

and .
sij(t) > o (wi(t) — 25(1)) (1.7)
whereq is defined in assumption 2, aidis the set of all nodes.

Lemma2.Lett; > to, if E;(t1) occurs, thenE;(r) doesn't occur for anyr >
t1 + 2B.

Lemma 3.Vi € V,Vty € N,Vj € N,;(t),
1 t—to
t>ty+3nB = CEj(t) > m(t()) +n (TL) (:L‘i(to) — m(to)).

wheren = (%)B.

Proof. Let us fix: and¢y. Let us considetq, ..., t,, such thatt,_; + 2B < t; <
tk—1 + 3B. Lemma 2 implies that it: # [, thenE};(t;) and E;(t;) doesn’t occur
together. Hence, there exists for which (1.6) is not satisfied for al}(t) €
{tk —B+1, ...,tk} ,andj € Nl(d;(tk))

Letj* € N;(dj(t)) such that). (ty) < (t),Vj € Ni(d}(tx)). Since (1.6)
is not satisfied foj = j*, we have

Lo (tr)

ah(ty) >
m(to) + 2 (L) (zi(to) — m(to)), Vi € Ni(di(tx)).

LEE* (tk)

AV,

Fort > to + 3nB, we havet > t;, > d’(t;). Lemma 1 givesy; € N;(d’(ty))

i t—dj (k) i i
zj(t) = m(dj(tr)) + (%B) tft (;(d5(tr)) — m(dj(tr)))
>mto) +2 ()7 (2) 7 (@i(to) — m(to)) -
Definition 1. We say that a sensgi is [-connected to a sensarif it is logi-

cally connected ta by I communication graphs, i.e. if there exisﬂﬁ@(tk) €
{tx =B +1,....,t,.}, wherek € {iy,...,i;}, such that = iy € Ny, (r;>(t1)), 42 €

Ni3 (Tg (t2))7 ery
it € N;(r] (tr))-
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Lemma 4. If sensorj is [-connected to sensaérthen

1
Vt > to + 3nlB, x;(t) > m(to) + (77)l (ﬁ)(t_to)l (xi(to) — m(to)) -
Proof. By induction. Suppose that the lemma is true fgr+ 3niB then if j is

[-connected tg, we have

1
n

l
><3"“”) (z4(t0) — m(t0))

Consider a sensdr connected tg (k is (I + 1)-connected ta), Lemma 3 and
the above inequality give (replacing by ¢y + 3nlB),

1t + 3nlB) > m(te) + (1)’ ((

xy(t)
mito +3niB) + ()" () (2)EB) (@ilto) - mito))

IV ~—1IV

m(to) + ()" ((2)E0)) ™ (;(t0) — mlto)

Proof (Proof of Theorem 1)Consider a sensar and a timety. Assumption 1
implies that sensoi is B-connected to any sensgr Lemma 4 givesVt €
[to+3nMB,ty+3nMB + B],Vj €V,

~—

.”L'j(to + 3nMB + B) > m(to) +0 (l‘i(to) — m(to)) R
whered > 0. Thus,
m(to + 3nMB + B) > m(tg) + 6 (maxa:i(to) - m(to)) .

Note thaflim;, . max; x;(tg) — m(to) = 0 (otherwise

limg, oo m(tg) = +00). On the other hand, d&n; ., m(t) = cand asn(t) <
z;(t) < max; x;(t), we deduce thatj € V, lim;_, x;(t) = ¢, which implies that
lim; . s;5(t) = 0. Thanks to assumption 1, we deduce that; ., v;;(t) = 0,
and thanks to (1.5), we deduce that = lim;_.o z;(t) = Y., z;(0),i.e.c =

T n

S 2:(0)/n, which yields tolim;_, o, 2;(t) = in(o) proving Theorem 1.
i=1

1.3.4 Practical | ssues

We now discuss some practical aspects related to the imptatien of Algo-
rithm 1. The main two points are how to choose(t) and how to overcome the
loss of messages?
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Each node updates its state following equation (1.2). Ehéghieved, by updat-
ing each sensors;;(t) through time. For sake of simplicity, the value ©f(¢) is
chosen to be computed by the weighted difference betweestdtes of nodesand
j as follows:

53y(t) = {aij(t)(xi(t)l';(t)) it 2i(t) > 2i(t)

10 otherwise

The choice 0f;,(¢) is then deduced from the proper choice of the weightét).
Hence,a;;(t) must be chosen such that the states of all the nodes coneetige t
averaged ., z;/n, i.e., assumptions 2 and 3 must be satisfied.

Denote by;* the sensor node satisfying.. = minycy, ) 2}, (t) (note thatj*
depends ori and timet). The values oty;;(t) must be selected so that to avoid the
ping pong condition presented in assumption 3.

This is equivalent to choose;; (¢) so thatvt > 0,Vi € N, andj # j* € N;(t)
satisfying;(t) > x’(t),

(1.8)

1 (1 2y can()(@i(t) — xf(b‘)))

0 <ay(t) <5 (zi(t) — I (t))

2
The weightsa; ;(t) must also be chosen in order to respect assumption 2. This
assumption can be carried out by fixing a constaat [0, 1] and choosing

Dkt en () Qi) (@i(t) — 2. (1) < Blai(t) — i (1)),
Sy ik (D) (@i ()~ (1)) (1.9)
aij(t) =5 (1 - == @ ()20 (1) - )

Indeed, from (1.9) we deduce

ooty > D =T 0) B0~ @) _1-p

2(wi(t) — 2. (1)) 2

Hence¥i, j*, ¢t such thay* € N;(t) andz’. (t) = mingen, (1) 74 (1),

8i+ () = = (t) (zq(t) — xj* (t)) >« (xz(t) — x;*(t)) .

The first inequation of (1.9) can be written B3, ..oy, ;) sik(t) < B(zi(t) —
:c; (t)), this means that the totality of data sent to the neighbouis(ekcept;*)
doesn't exceed a portigh of (z;(t) — - ().

Equations (1.8) and (1.9) are derived from the assumpticgusd?3. Therefore
the choice of the weighis;; must take into consideration these two equations.

First let define the deviatior\! (¢) of nodei as:

iy Jwi(t) = ah(t) ifj € Ni(t) andz;(t) > x}(t)
A1) = {0 otjherwise.
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Algorithm 2 Temporally updating weights of node
: for j «— 1tondo
if 5 #ithen
si5 <0
aij 0

1
2
3
4.
5. endif
6
7
8
9

. end for
k<0
P Sum —0
: find ¢ such thatA? = Delta;[k]
10: g =1/(mi + 1)
11: s;0 = iy X Af
12: repeat
13:  Sum < Sum + sy
14: k—k+1
15:  find¢ such thatA{ = Delta;[k]
16: e 1/(mi+1)
17: Sip — Qp X Af
18: until NOT ((z; — Sum > a® + s;) AND (k < n))

Algorithm 2 presents our method for temporally updatingateraging weights.
Node i computes the difference between its current state andrdustates of its
neighbours. The positive deviationd > 0) are then stored in the arrdyelta;, in
a decreasing order. Then, it sets the weightto 1/(n;(t) + 1), wheren;(t) is the
current number of its neighbours, starting by its neighbawdesj whose have the
larger deviations while respecting assumption 3.

In order to cope with the problem of message loss, we adopedotlowing
strategy: instead of sending;(¢) from node: to nodey, it is the sumX, (t) =
S o<r<; 5ij(7) that is sent. Symmetrically the receivers maintains the sfithe
received datal, , (t) = > -, 7;i(7). Upon receiving, at a time¢, a message
from nodei, a nodej can now recover all the data that was sent before éfiig). It
has only to calculate the difference between the receﬁ@gd{ (t)) and the locally
stored,, ().

To conclude, the state messages exchanged during the iexeaitthe algorithm
are composed of two scalar values : the current state of tthe, mg(t), and the sum
of the sent datas, (t).

1.3.5 lllustrative Example

To illustrate the behaviour of our proposed approach, lesonsider the example
presented in Figure 1.2. It consists in a network of four sodée initial measure-
ment of each nodeis known byz; and the initial state:; (0) = z;.

Following the second step of Algorithm 1, each node compiltesveights; ;
for its neighbours. This is done by using Algorithm 2.
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Fig. 1.2 An example of a sensor network composed of four nodes with théalimeasurements.

Let us focus on the case efodes for instance. We notice that it has three
neighbours and the high deviatiahcorresponds taodes. Therefore, it computes

as3(0) = ﬁ = 1 first, such thaty, is the number of its neighbours. Then,

$43(0) = $(24(0) — 23(0)) = 0.175. For the two reminder neighboursde; and
nodes, node, computesnys (0) first for the reason that\? is higher thanA}. We
note that fornodes the Assumption 3 (ping pong condition) is satisfied whilesit i
not the case fonode; which leads tavy; (0) = 0.

All the nodes compute their weights and then diffuse thdwrimation to their
neighbours to update their states following Equation (IF2y the above example
after the first step we obtain:

)=0.7
)=05+01-0.1=05

) =0.240.1+0.175 = 0.475
) =0.9—0.1—0.175 = 0.625

xl(l
372(1
1‘3(1
:ZZ4(1

This process is repeated for several iterations until &l dtates of the nodes
converge to the average of the initial measurements. We thateour scheme is
robust to the topology changes and the loss of messagescassisl in details in
the next section.

1.4 Experimental Results

In order to evaluate the performance of our approach, we inaplemented a sim-
ulation package using the discrete event simulator OMNE[R4}. This package
includes our asynchronous algorithm as well as a synchpnoe. As confirmed
in previous related works [8, 5], distributed approacheaspeuform centralised ap-
proaches, in particular in noisy networks. For this reasanhave not included in
our comparison centralised approaches, and focuses dnsteaynchronous dis-
tributed approaches that are more closed to our work.
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We performed several runs of the algorithms (an average ©frd0s). In each
experimental run, the network graph is randomly generatére the nodes are
distributed over 40, 100] x [0, 100] field. The node communication range was set to
30. The initial node measurementswere also randomly generated. Each node is
aware of its immediate neighbours through a "hello” mess@gee the neighbour-
hood is identified, each node run the algorithm i.e., begithanging data until
convergence.

We studied the performance of our algorithm with regard &dfttlowing param-
eters:

e Robustness in front of communication failures: we mainlsia@the probability
of communication failure, noted. This parameter allows us to highlight the
behaviour of our scheme in noisy environment and in dynaagolbgies.

e Scalability: we varied the number of sensor nodes deploye¢ld same area to
see how our proposed approach scales?

The main metrics we measured in this paper are: (a) the mean lextween
the current estimate; and the average of the initial data, (b) the mean number of
iterations necessary to reach convergence and (c) thellotmera before reaching
the global convergence. We note here that in asynchrongosithims, there is no
direct correlation between the number of iterations anddtat time to convergence,
contrary to synchronous approaches. In fact, as there adelags between nodes,
the number of iterations could be relatively high. This dnesmean that the total
time to convergence could be long too. For this reason, we heade the distinction
between the number of iterations and the time taken to reawbecgence. As we
run a discrete event simulation package, this time is thegbren by the discrete
simulator OMNET++ [21]; we named dimulated timeFor all the experiments, the
global convergence state is said to be reached when|z; — """, y;/n| becomes
less than some fixed constant

Note that, in the figures next sections, the points reprebenobtained results
and the curves are an extrapolation of these points.

1.4.1 Basic Behaviour

First, we show simulation results for the case where we hdixed topology with

a fixed number of nodes (50 nodes) angd= 10~*. The mean error of the nodes

e’ = > &/n was plotted in Figure 1.3. As expected, it can be seen that the
convergence in the synchronous mode is faster than the ig@nee in the asyn-
chronous one. It is also noticed that the two graphs havesime pace.

However, in many scenarios an exact average is not requaretpne may be
willing to trade precision for simplicity. For instance, mtizing the number of
iterations to reduce the energy consumption can be pradlég sensor networks
applications where exact averaging is not essential.
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1.4.2 Dynamic topology

In a next step, we simulated the proposed sensor fusion schétim dynamically
changing communication graphs. We generated the sequérmarmmunication
graphs as follows: at each time step, each edge in the graphyisvailable with

a selected probability, independent of the other edges and all previous steps. To
ensure the jointly connected condition of the generateplgave selected a period

of time 7 in which an edge cannot stay disconnected more thiame.

We fixed the number of sensor nodes to 50 ang¢ 10~*. In preliminary re-
sults, the period- was chosen in a way that is equal to three times the time of a
communication. We show in figure 1.4 and figure 1.5 the vaniatif the number of
iterations and the time simulation with the probability wik failure p. We notice
that the number of iterations and the overall time increaitle thie increase of the
probability, but not in an exponential way.

240

Asynchrbnous AIgorifhm e

number of iterations

60 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Probability of link failure

Fig. 1.4 Number of Iterations
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Note that we also tried to run the synchronous algorithm dythamic topology
changes, but the execution times were so prohibitive, teaalmandoned those ex-
periments. These results confirm that synchronous algusitire infeasible for real
sensor networks.

1.4.3 Larger Sensor Network

Our scheme can be applied to sensor networks where a larggenafrsensor nodes
are deployed, since it is fully distributed and there is netdized control. In our

simulations we varied the number of sensor nodes from 20 @n@des, deployed
in the region[0, 100] x [0, 100], we selected for all nodess = 1074,

However, as shown in the two Figures (Figure 1.6 and Figute &s the number
of sensor nodes increases, the average of the iterationsenas well as the time
needed to reach global convergence decreases in the twe £asehronous and
asynchronous. We notice that in the synchronous mode wéneltéess number of
iterations, on the other hand it takes more time to reachltitmfconvergence than
the asynchronous one.

1.5 Further Discussions

In this section, we give further consideration to our datidn scheme from the
viewpoints of robustness to the delays and loss of messagksreergy efficiency
in comparison to other existing works.

Sensor nodes are small-scale devices. Such small deviegsmgrlimited in the
amount of energy they can store or harvest from the envirotniéus, energy
efficiency is a major concern in a sensor network. In addjtoany thousands of
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sensors may have to be deployed for a given task. An indiVigelasor's small
effective range relative to a large area of interest makissatrequirement.

Therefore, scalability is another critical factor in théwerk design. Sensor net-
works are subject to frequent partial failures such as estedibatteries, nodes de-
stroyed due to environmental factors, or communicationifes due to obstacles in
the environment. Message delays can be rather high in seat@orks due to their
typically limited communication capacity which is shargdrimdes within commu-
nication range of each other. The overall operation of tins@enetwork should be
robust despite such partial failures.

In our scheme, we presented a scalable asynchronous methakfaging data
fusion in sensor networks. The simulations we conductedghat, the higher the
density of the deployed nodes, the more the precise of tlmasin would be.
On the other hand, our algorithm is totally asynchronousretwe consider delay
transmission and loss of messages in the proposed modele Blspects which are
highly important are not taken into account in previous sefission works [8, 14].
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Another important practical issue in sensor network is gy efficiency. Op-
timizing the energy consumption in sensor networks is eel& minimize the num-
ber of the network communications as the radio is the mainggneonsumer in a
sensor node [1]. Considering the distributed iterativecpdure for calculating av-
erages, the only way to minimize the energy consumption iedace the number
of iterations before attending the convergence. To show Wwell our algorithm
saves energy, we compared our obtained results to thosaedy another diffu-
sive scheme for average computation in sensor networkE¢8jnstance, in a static
topology our algorithm converges aft&riterations with a mean error @b~ while
the best results in the second approach reagh@drations for the same mean error.
For the dynamic topology mode, we obtainkid iterations, mean errar0~* and
probability of link failure0.25, while the number of iterations is very higk (300
iterations) in [8].

1.6 Conclusion and Future Work

In this paper, we introduced a fault tolerant diffusion sokefor data fusion in
sensor networks. This algorithm is based on data diffudioa;nodes cooperate
and exchange their information only with their direct imggmeous neighbours. In
contrast to existing works, our algorithm does not rely oncéyonization nor on
the knowledge of the global topology. We prove that undeablé assumptions, our
algorithm achieves the global convergence in the sensgdftat some iterations,
each node has an estimation of the average consensus dhierathole network.
To show the effectiveness of our algorithm, we conducteig@sef simulations and
studied our algorithm under various metrics.

In our scenario, we have focused on developing a reliableraimast algorithm
from the view points of asynchronism and fault tolerancedy@amically changing
topology. We have taken into account two points which doaitehbeen previously
addressed by other authors, namely the delays between andéke loss of mes-
sages. Knowing that in real sensor networks the nodes ane podailures. One of
the near future goals is to allow nodes to be dynamically ddahel removed during
the execution of the data fusion algorithm. We also plan $o ¢err algorithm in a
real-world sensor network.
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