
Chapter 1
Distributed Average Consensus in Large
Asynchronous Sensor Networks

Jacques M. Bahi, Arnaud Giersh, Abdallah Makhoul and Ahmed Mostefaoui

Abstract One important issue in sensor networks is parameters estimation based on
nodes measurements. Several approaches have been proposedin the literature (cen-
tralized and distributed ones). Because of the particular noisy environment, usually
observed in sensor networks, centralized approaches are not efficient and present
several drawbacks (important energy consumption, routinginformation maintain-
ing, etc.). In distributed approaches however, nodes exchange data with their neigh-
bours and update their own data accordingly until reaching convergence to the right
parameters estimate. These approaches, although provide some robustness against
nodes failure, does not address important issues as communication delay tolerance
and asynchronism (i.e., they require that nodes remain synchronous in communica-
tion and processing). In this chapter, we tackle these issues by proposing a totally
asynchronous scheme that is communication delay tolerant.The extensive simula-
tions series we conducted have showed the effectiveness of our approach.

1.1 Introduction

Recent years have witnessed significant advances in wireless sensor networks which
emerge as one of the most promising technologies for the 21st century [1]. In fact,
they present huge potential in several domains ranging fromhealth care applica-
tions to military applications. In general, the primary objective of a wireless sensor
network is to collect data from the monitored area and to transmit it to a base sta-
tion (sink) for processing. Many applications envisioned for sensor networks consist
of lowpower and lowcost nodes. For instance, applications such as data fusion and
distributed coordination require distributed function computation/parameter estima-
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tion under topology changes and power constraints. Distributed average consensus,
in ad hoc networks, is an important issue in distributed agreement and synchro-
nization problems [2] and is also a central topic for load balancing (with divisible
tasks) in parallel computers [3]. More recently, it has alsofound applications in dis-
tributed coordination of mobile autonomous agents [4, 5] and distributed data fusion
in sensor networks [6, 7]. In this chapter, we focus on a particular class of iterative
algorithms based on information diffusion for average consensus, widely used in the
applications cited above. Each node broadcasts its data to its neighbours and updates
its estimation according to a weighted sum of the received data.

To illustrate the average consensus problem, let us consider the example of petrol
tanks. We suppose that in a oil station we have large number oftanks related to each
other in mechanical and sensor networks. The role of sensorsis to dectect the level
of each oil tank. The objective of this application is to keepthe level of oil the
same in all tanks. When a sensor node detects some changes in its level, it launchs
an average consenus processus to calculate the average level of all tranks and then
thanks to the mechanical network an oil transfer operation is done to regulate the
level. The average consensus process is used to compute the average level, each
sensor node exchanges its information with its neighbors byiterative manner until
the convergence to the average consensus.

To calculate the average consensus, many distributed approaches have been pro-
posed. On the other hand, these existing approaches presentsome insufficiencies
(see next section). For instance, the flooding approach requires that each node holds
a relatively important storage space. Other approaches make the unpractical assump-
tion of communication synchronization between sensors [8,5] and do not tolerate
communication delays neither nodes failures. These weaknesses remain very restric-
tive in sensor network environment where on one hand nodes are prone to frequent
failures as they are driven by batteries and on the other handcommunications are
almost unreliable and prone to delays. Moreover, these two limitative features lead,
in addition to nodes mobility, to dynamically changing network topologies.

In order to overcome the above mentioned weaknesses, we propose and inves-
tigate in this chapter a novel approach for data fusion in sensor networks. The key
idea behind is to develop a consensus algorithm that allows all nodes of the sensor
network to track the average of their previous measurements[6, 8, 5, 9, 10, 11, 12,
13, 14]. More specifically, our proposition is based on anin-network asynchronous
iterative algorithm, run by each node and in which nodes communicate with only
their immediate neighbours.

In this context, let us discuss the primary contributions ofthis chapter:

• Our approach does not require any synchronization between nodes as it is basi-
cally asynchronous. In other words, each node communicatesits data to its in-
stantaneous neighbours at its own ”rhythm” i.e., no delays between nodes are ob-
served in our approach. This is particularly important because in the synchronous
schemes, as the one reported in [8], any delay between two nodes in the network
will result in a global delay over the whole network since allthe nodes are syn-
chronous. This is particularly limitative in heterogeneous sensor networks where
nodes have different processing speeds.
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• As a consequence of its asynchronism, our proposed approachtotally tolerates
communication delays. This feature is of an important matter because sensor net-
works, as it is commonly known, are prone to environmental perturbations [15]
when communication delays occur more frequently.

• The proposed distributed algorithm, as proven theoreticaland validated experi-
mentally, supports dynamic topologies and guarantees thateach sensor node will
converge to the average consensus.

However, as for any iterative approach, our approach could,under certain en-
vironmental conditions, consume more network resources, mainly communica-
tions, than other centralized approaches, specifically in ”perfect environment” where
nodes and communications are totally reliable and the network topology is fixed.
Nevertheless, we note here that our concern is more focused on ”noisy environ-
ment” in which communication unreliability and nodes failures are usual.

1.2 Overview of Averaging Problem in Sensor Networks

The first and the simplest approach for distributed average estimation in sensor net-
works is calledfloodingapproach [8]. In this approach, each sensor node broadcasts
all its stored and received data to its neighbours. After a while, each node will hold
all the data of the network and acts as a fusion center to compute the estimate of the
unknown parameter. This technique has however several disadvantages [8]. First,
it results in huge amount of exchanged duplicate messages, which represents a real
limitation in environments like sensor networks. Second, flooding requires that each
node stores at least one message per node (in order to computethe average). This
could lead to an important storage memory requirement in case of a large sensor
network with the associated operations (reads and writes).Finally, it is obvious that
those requirements will consume much resources leading to an important decrease
of the whole network lifetime.

Alternatively, in [16] the authors proposed a scalable sensor fusion scenario that
performs fusion of sensor measurements combined with localKalman filtering.
They developed a distributed algorithm that allows the sensor nodes to compute the
average of all of their measurements. It is worthy to note that many other sensor data
fusion approaches are based on Kalman filters and mobile agents [17, 9, 18, 12, 13].

An iterative method for distributed data fusion in sensor networks based on the
calculation of an average consensus1 has been proposed in [8]. The authors con-
sider that every node takes a noisy measurement of the unknown parameter. Each
node broadcasts its data to its neighbours and updates its estimation according to a
weighted sum of the received data. In this scheme all the communications are direct
ones.

1 In the rest of the paper, the terms ”average consensus” and ”parameter estimation” are used to
denote the same mechanism of finding an estimate of the unknown parameter average.
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Although the above mentioned works and other existing data fusion scenar-
ios guarantee some level of robustness to nodes failures anddynamic topology
changes [8, 16, 17, 11, 5], they either put some unpractical assumptions like nodes
synchronization or do not support practical issues as the communication delays.

To the best of our knowledge, the above issues which are extremely important,
especially in noisy environments, are not taken into account in previous data fu-
sion approaches. In this chapter, we present an asynchronous data fusion scheme,
particularly tailored to perturbed sensor networks. It focuses on a distributed iter-
ative algorithm for calculating averages over asynchronous sensor networks. The
sensor nodes exchange and update their data by the mean of a weighted sum in
order to achieve the average consensus. The suggested algorithm does not rely on
synchronization between the nodes nor does it require any knowledge of the global
topology. To round up, the convergence of the proposed algorithm is proved in a
general asynchronous environment.

1.3 Asynchronous Distributed Consensus with messages loss

1.3.1 Problem Formulation

A sensor network is modelled as a connected undirected graphG = (V,E). The set
of nodes is denoted byV (the set of vertices), and the links between nodes byE
(the set of edges). The nodes are labelledi = 1, 2, . . . , n, and a link between two
nodesi andj is denoted by(i, j). The dynamic topology changes are represented
by the time varying graphG(t) = (V,E(t)), whereE(t) is the set of active edges
at time t. The set of neighbours of nodei at time t is denoted byNi(t) = {j ∈
V | (i, j) ∈ E(t)}, and the degree (number of neighbours) of nodei at timet by
ηi(t) = |Ni(t)|.

Each node takes initial measurementzi. For sake of simplicity let us suppose
thatzi ∈ R. Then,z will refer to the vector whoseith component iszi in case we
are concerned with several parameters. Each node on the network also maintains a
dynamic statexi(t) ∈ R which is initially set toxi(0) = zi.

Intuitively each node’s statexi(t) is its current estimate of the average value
∑n

i=1 zi/n. The goal of the averaging algorithm, is to let all the statesxi(t) go
to the average

∑n

i=1 zi/n, as t → ∞. This will be done through data exchange
between neighbouring nodes where each node at every time iteration t performs
weighted sum of the received data as follows [5, 8]:

xi(t + 1) = xi(t) −
∑

j∈Ni

αij(t)(xi(t) − xj(t)), i = 1, . . . , n. (1.1)

Whereαij(t) is the weight onxj(t) at nodei, andαij(t) = 0 for j 6∈ Ni(t).
In order to handle communication delays, we consider that attime t a nodei gets

the state of its neighbourj at timedi
j(t), where0 ≤ di

j(t) ≤ t
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di
j(t) represents the transmission delay between nodesi andj. Therefore, let us

denotexi
j(t) = xj(d

i
j(t)) ∈ R the state of nodej at timedi

j(t), received at timet
by nodei. Then, we defined the extended neighbourhood of nodei at timet as the
set:

N i(t) =
{

j | ∃ di
j(t) ∈ {t − B + 1, ..., t} , such thatj ∈ Ni(d

i
j(t))

}

;

note thatNi(t) ⊂ N i(t).
The problem, as for any distributed algorithmic approach, is how and under

which conditions, will we ensure convergence of the proposed algorithm? In other
terms, are we sure that all the node’sxi will converge to the right estimate of the un-
known parameter average value? Also, how can we choose the parametersαij(t) so
to improve the convergence speed and the quality of the derived estimate? Hereafter
we present and analyse our proposal. We used the notations reported in Table 1.1

Notation Description
G(t) the time varying graph
Ni(t) the set of neighbors of nodei at timet

zi the initial measurement of nodei
xi(t) the dynamic state of nodei
di

j(t) the transmission delay between nodesi andj

xi
j(t) = xj(d

i
j(t)) the state of nodej at timet− di

j(t)

N i(t) the extended neighborhood ofi at timet

sij(t) the data sent byi to j at timet

rji(t) the data received byi from j at timet

Table 1.1 Notations

1.3.2 Asynchronous scheme

Our algorithm to compute the average consensus over the network is based on infor-
mation diffusion i.e., each node takes a measurement and then cooperates with its
neighbours in a diffusion manner to estimate the average of all the collected infor-
mation. It is inspired from the work of Bertsekas and Tsitsiklis [19, section 7.4] on
load balancing and extends it to cope with dynamic topologies and messages loss
and delays. Algorithm 1 presents the main steps of our proposed algorithm.
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Algorithm 1 The General Algorithm.
1: Each node maintains an instantaneous statexi(t) ∈ R, and att = 0 (after all nodes have taken

the measurement), each node initializes its state asxi(0) = zi.
2: At every stept each nodei:

• compares its state to the states of its neighbours;
• chooses and computessij(t). They have to be chosen carefully in order to ensure the

convergence of the algorithm;
• diffuses its information;
• receives the information sent by its neighboursrji(t);
• updates its state with a combination of its own state and the states at its instantaneous and

extended neighbours (N i(t)) as follows:

xi(t + 1) = xi(t)−
X

j∈Ni(t)

sij(t) +
X

j∈Ni(t)

rji(t). (1.2)

1.3.3 Theoretical Analysis (Convergence)

We now introduce three assumptions that ensure the convergence of our algorithm.

Assumption 1 There existsB ∈ N such that∀t > 0,
t − B < di

j(t) ≤ t and the union of communication graphs
⋃t+B−1

τ=t G(τ) is a
connected graph.

This assumption, known as jointly connected condition [8, 20], implies that each
nodei is connected to a nodej within any time interval of lengthB and that the de-
lay between two nodes cannot exceedsB. Recall that, a graph is connected if for any
two verticesi andj there exists a sequence of edges(i, k1), (k1, k2), . . . , (kl−1, kl),
(kl, j).

In Figure 1.1 we show an example of jointly connected graphs,we notice that at
t = 1 the graphG1 is not connected; the same case forG2 at t = 2; while the union
G of G1 andG2 is a connected graph.

Assumption 2 There existsα > 0,∀t > 0,
∀i ∈ N,∀j ∈ Ni(t), such thatα(xi(t) − xi

j(t)) ≤ sij(t).
(

sij(t) = 0 if (xi(t) ≤ xi
j(t)) for all j ∈ Ni(t)

)

.

The second assumption postulates that when a nodei detects a difference be-
tween its state and the states of its neighbours, it therefore computes non negligible
sij to all nodesj where(xi(t) > xi

j(t)).

Assumption 3
xi(t) −

∑

k∈Ni(t)

sik(t) ≥ xi
j(t) + sij(t) (1.3)

The third assumption prohibits nodei to compute very largesij which creates a
ping-pong state. Recall that, the ping-pong state is established when two nodes keep
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Fig. 1.1 Example of jointly connected graphs

sending data to each other back and forth, without ever reaching equilibrium. Note
that these two assumptions are similar to assumption 4.2 introduced in [19, sec-
tion 7.4].

Theorem 1. if the assumptions 1, 2 and 3 are satisfied, Algorithm 1 guarantees that

lim
t→∞

xi(t) =
1

n

n
∑

i=1

xi(0) (1.4)

i.e., all node states converge to the average of the initial measurements of the
network.

Proof
Let m(t) = mini mint−B<τ≤t xi(τ). Note thatxi

j(τ) ≥ m(t), ∀i, j, t.
Lemma 1 and 2 below can be proven similarly to the lemma of pages 521 and 522
in [19].

Denote byvij(t) =
t−1
∑

s=0
(sij(s) − rij(s)) , the data sent byi and not yet received

by j at timet. We suppose thatvij(0) = 0. Then by data conservation, we obtain

n
∑

i=1



xi(t) +
∑

j∈Ni(t)

vij(t)



 =

n
∑

i=1

xi(0), ∀t > 0 (1.5)

¿From assumption 1 we can conclude that the datavij(t) in the network before
time t consists in data sent in the interval time{t − B + 1, ..., t − 1} , sovij(t) ≤
∑t−1

τ=t−B+1 sij(t), ∀nodei,∀j ∈ Ni(t).
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Lemma 1. The sequencem(t) is monotone, nondecreasing and converges and
∀i,∀s ≥ 0,

xi(t + s) ≥ m(t) +

(

1

n

)t1−t0

(xi(t) − m(t))

Let i ∈ V, t0 ∈ N, andt ≥ t0, j ∈ V, we say that the eventEj(t) occurs if there
existsj ∈ N i(t) such that

xi
j(t) < m(t0) +

α

2nt−t0
(xi(t0) − m(t0)) (1.6)

and
sij(t) ≥ α

(

xi(t) − xi
j(t)
)

, (1.7)

whereα is defined in assumption 2, andV is the set of all nodes.

Lemma 2. Let t1 ≥ t0, if Ej(t1) occurs, thenEj(τ) doesn’t occur for anyτ ≥
t1 + 2B.

Lemma 3.∀i ∈ V,∀t0 ∈ N,∀j ∈ N i(t),

t ≥ t0 + 3nB ⇒ xj(t) ≥ m(t0) + η

(

1

n

)t−t0

(xi(t0) − m(t0)).

whereη = α
2

(

1
n

)B
.

Proof. Let us fix i andt0. Let us considert1, ..., tn such thattk−1 + 2B ≤ tk ≤
tk−1 + 3B. Lemma 2 implies that ifk 6= l, thenEj(tk) andEj(tl) doesn’t occur
together. Hence, there existstk for which (1.6) is not satisfied for alldi

j(tk) ∈

{tk − B + 1, ..., tk} , andj ∈ Ni(d
i
j(tk)).

Let j∗ ∈ Ni(d
i
j(tk)) such thatxi

j∗(tk) ≤ xi
j(tk),∀j ∈ Ni(d

i
j(tk)). Since (1.6)

is not satisfied forj = j∗, we have

xi
j(tk) ≥ xi

j∗(tk)

xi
j∗(tk) ≥ m(t0) + α

2

(

1
n

)tk−t0
(xi(t0) − m(t0)) , ∀j ∈ Ni(d

i
j(tk)).

For t ≥ t0 + 3nB, we havet ≥ tk ≥ di
j(tk). Lemma 1 gives,∀j ∈ Ni(d

i
j(tk))

xj(t) ≥ m(di
j(tk)) +

(

1
n

)t−di
j(tk)

(xj(d
i
j(tk)) − m(di

j(tk)))

≥ m(t0) + α
2

(

1
n

)B ( 1
n

)t−t0
(xi(t0) − m(t0)) .

Definition 1. We say that a sensorj is l-connected to a sensori if it is logi-
cally connected toi by l communication graphs, i.e. if there existsri

k(tk) ∈
{tk − B + 1, ..., tk} , wherek ∈ {i1, ..., il}, such thati = i1 ∈ Ni2(r

i2
i1

(t1)), i2 ∈

Ni3(r
i3
i2

(t2)), ...,

il ∈ Nj(r
j
l (tl)).
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Lemma 4. If sensorj is l-connected to sensori then

∀t ≥ t0 + 3nlB, xj(t) ≥ m(t0) + (η)
l
(
1

n
)(t−t0)

l

(xi(t0) − m(t0)) .

Proof. By induction. Suppose that the lemma is true fort0 + 3nlB then if j is
l-connected toj, we have

xl(t0 + 3nlB) ≥ m(t0) + (η)
l

(

(
1

n
)(3nlB)

)l

(xi(t0) − m(t0)) .

Consider a sensork connected toj (k is (l + 1)-connected toi), Lemma 3 and
the above inequality give (replacingt0 by t0 + 3nlB),

xk(t) ≥

m(t0 + 3nlB) + η( 1
n
)

t−t0−3nlB
(

(η)
l (

( 1
n
)(3nlB)

)l
(xi(t0) − m(t0))

)

≥

m(t0) + (η)
l+1 (

( 1
n
)(t−t0)

)l+1
(xi(t0) − m(t0)) .

Proof (Proof of Theorem 1).Consider a sensori and a timet0. Assumption 1
implies that sensori is B-connected to any sensorj. Lemma 4 gives:∀t ∈
[t0 + 3nMB, t0 + 3nMB + B] , ∀j ∈ V,

xj(t0 + 3nMB + B) ≥ m(t0) + δ (xi(t0) − m(t0)) ,

whereδ > 0. Thus,

m(t0 + 3nMB + B) ≥ m(t0) + δ
(

max
i

xi(t0) − m(t0)
)

.

Note thatlimt0→∞ maxi xi(t0) − m(t0) = 0 (otherwise
limt0→∞ m(t0) = +∞). On the other hand, aslimt→∞ m(t) = c and asm(t) ≤
xj(t) ≤ maxi xi(t), we deduce that∀j ∈ V, limt→∞ xj(t) = c, which implies that
limt→∞ sij(t) = 0. Thanks to assumption 1, we deduce thatlimt→∞ vij(t) = 0,
and thanks to (1.5), we deduce thatnc = limt→∞ xi(t) =

∑n

i=1 xi(0),i.e. c =

∑n

i=1 xi(0)/n, which yields tolimt→∞ xi(t) = 1
n

n
∑

i=1

xi(0) proving Theorem 1.

1.3.4 Practical Issues

We now discuss some practical aspects related to the implementation of Algo-
rithm 1. The main two points are how to choosesij(t) and how to overcome the
loss of messages?
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Each node updates its state following equation (1.2). This is achieved, by updat-
ing each sensorssij(t) through time. For sake of simplicity, the value ofsij(t) is
chosen to be computed by the weighted difference between thestates of nodesi and
j as follows:

sij(t) =

{

αij(t)(xi(t) − xi
j(t)) if xi(t) > xi

j(t) ,
0 otherwise.

The choice ofsij(t) is then deduced from the proper choice of the weightsαij(t).
Hence,αij(t) must be chosen such that the states of all the nodes converge to the
average

∑n

i=1 zi/n, i.e., assumptions 2 and 3 must be satisfied.
Denote byj∗ the sensor node satisfyingxi

j∗ = mink∈Ni(t) xi
k(t) (note thatj∗

depends oni and timet). The values ofαij(t) must be selected so that to avoid the
ping pong condition presented in assumption 3.

This is equivalent to chooseαij(t) so that∀t > 0,∀i ∈ N, andj 6= j∗ ∈ N i(t)
satisfyingxi(t) > xi

j(t),

0 ≤ αij(t) ≤
1

2

(

1 −

∑

j 6=i αik(t)(xi(t) − xk
i (t))

(xi(t) − xj
i (t))

)

(1.8)

The weightsαij(t) must also be chosen in order to respect assumption 2. This
assumption can be carried out by fixing a constantβ ∈ [0, 1] and choosing







∑

k 6=j∗∈Ni(t)
αik(t)(xi(t) − xi

k(t)) ≤ β(xi(t) − xi
j∗(t)),

αij∗(t) = 1
2

(

1 −
P

k 6=j∗ αik(t)(xi(t)−xi
k(t))

(xi(t)−xi
j∗

(t))

)

(1.9)

Indeed, from (1.9) we deduce

αij∗(t) ≥
(xi(t) − xi

j∗(t)) − β(xi(t) − xi
j∗(t))

2(xi(t) − xi
j∗(t))

=
1 − β

2
= α.

Hence,∀i, j∗, t such thatj∗ ∈ N i(t) andxi
j∗(t) = mink∈Ni(t) xi

k(t),

sij∗(t) = αij∗(t)
(

xi(t) − xi
j∗(t)

)

≥ α
(

xi(t) − xi
j∗(t)

)

.

The first inequation of (1.9) can be written as
∑

k 6=j∗∈Vi(t)
sik(t) ≤ β(xi(t) −

xi
j∗(t)), this means that the totality of data sent to the neighbours ofi (exceptj∗)

doesn’t exceed a portionβ of (xi(t) − xi
j∗(t)).

Equations (1.8) and (1.9) are derived from the assumptions 2and 3. Therefore
the choice of the weightsαij must take into consideration these two equations.

First let define the deviation∆j
i (t) of nodei as:

∆j
i (t) =

{

xi(t) − xi
j(t) ifj ∈ Ni(t) andxi(t) > xi

j(t) ,
0 otherwise.
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Algorithm 2 Temporally updating weights of nodei.
1: for j ← 1 to n do
2: if j 6= i then
3: sij ← 0
4: αij ← 0
5: end if
6: end for
7: k ← 0
8: Sum← 0
9: find ℓ such that∆ℓ

i = Deltai[k]

10: αiℓ = 1/(ηi + 1)
11: siℓ = αiℓ ×∆ℓ

i

12: repeat
13: Sum← Sum + sil

14: k ← k + 1
15: findℓ such that∆ℓ

i = Deltai[k]
16: αiℓ ← 1/(ηi + 1)

17: siℓ ← αiℓ ×∆ℓ
i

18: until NOT ((xi − Sum ≥ xi
ℓ
+ siℓ) AND (k < n))

Algorithm 2 presents our method for temporally updating theaveraging weights.
Node i computes the difference between its current state and current states of its
neighbours. The positive deviations (∆j

i > 0) are then stored in the arrayDeltai, in
a decreasing order. Then, it sets the weightαij to 1/(ηi(t) + 1), whereηi(t) is the
current number of its neighbours, starting by its neighbours nodesj whose have the
larger deviations while respecting assumption 3.

In order to cope with the problem of message loss, we adopted the following
strategy: instead of sendingsij(t) from nodei to nodej, it is the sumΣsij

(t) =
∑

0≤τ≤t sij(τ) that is sent. Symmetrically the receivers maintains the sumof the
received dataΣrji

(t) =
∑

0≤τ≤t rji(τ). Upon receiving, at a timet, a message

from nodei, a nodej can now recover all the data that was sent before timedj
i (t). It

has only to calculate the difference between the receivedΣsij
(dj

i (t)) and the locally
storedΣrji

(t).
To conclude, the state messages exchanged during the execution of the algorithm

are composed of two scalar values : the current state of the node,xi(t), and the sum
of the sent dataΣsij

(t).

1.3.5 Illustrative Example

To illustrate the behaviour of our proposed approach, les usconsider the example
presented in Figure 1.2. It consists in a network of four nodes. The initial measure-
ment of each nodei is known byzi and the initial statexi(0) = zi.

Following the second step of Algorithm 1, each node computesthe weightsαij

for its neighbours. This is done by using Algorithm 2.
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z2 = 0.5 4= 0.9z

z1 = 0.7
z = 0.23

Fig. 1.2 An example of a sensor network composed of four nodes with their initial measurements.

Let us focus on the case ofnode4 for instance. We notice that it has three
neighbours and the high deviation∆ corresponds tonode3. Therefore, it computes
α43(0) = 1

η4+1 = 1
4 first, such thatη4 is the number of its neighbours. Then,

s43(0) = 1
4 (x4(0) − x3(0)) = 0.175. For the two reminder neighboursnode1 and

node2, node4 computesα42(0) first for the reason that∆2
4 is higher than∆1

4. We
note that fornode2 the Assumption 3 (ping pong condition) is satisfied while it is
not the case fornode1 which leads toα41(0) = 0.

All the nodes compute their weights and then diffuse their information to their
neighbours to update their states following Equation (1.2). For the above example
after the first step we obtain:

x1(1) = 0.7
x2(1) = 0.5 + 0.1 − 0.1 = 0.5
x3(1) = 0.2 + 0.1 + 0.175 = 0.475
x4(1) = 0.9 − 0.1 − 0.175 = 0.625

This process is repeated for several iterations until all the states of the nodes
converge to the average of the initial measurements. We notethat our scheme is
robust to the topology changes and the loss of messages as discussed in details in
the next section.

1.4 Experimental Results

In order to evaluate the performance of our approach, we haveimplemented a sim-
ulation package using the discrete event simulator OMNET++[21]. This package
includes our asynchronous algorithm as well as a synchronous one. As confirmed
in previous related works [8, 5], distributed approaches out perform centralised ap-
proaches, in particular in noisy networks. For this reason,we have not included in
our comparison centralised approaches, and focuses instead on synchronous dis-
tributed approaches that are more closed to our work.
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We performed several runs of the algorithms (an average of 100 runs). In each
experimental run, the network graph is randomly generated,where the nodes are
distributed over a[0, 100]× [0, 100] field. The node communication range was set to
30. The initial node measurementszi were also randomly generated. Each node is
aware of its immediate neighbours through a ”hello” message. Once the neighbour-
hood is identified, each node run the algorithm i.e., begins exchanging data until
convergence.

We studied the performance of our algorithm with regard to the following param-
eters:

• Robustness in front of communication failures: we mainly varied the probability
of communication failure, notedp. This parameter allows us to highlight the
behaviour of our scheme in noisy environment and in dynamic topologies.

• Scalability: we varied the number of sensor nodes deployed in the same area to
see how our proposed approach scales?

The main metrics we measured in this paper are: (a) the mean error between
the current estimatexi and the average of the initial data, (b) the mean number of
iterations necessary to reach convergence and (c) the overall time before reaching
the global convergence. We note here that in asynchronous algorithms, there is no
direct correlation between the number of iterations and thetotal time to convergence,
contrary to synchronous approaches. In fact, as there are nodelays between nodes,
the number of iterations could be relatively high. This doesnot mean that the total
time to convergence could be long too. For this reason, we have made the distinction
between the number of iterations and the time taken to reach convergence. As we
run a discrete event simulation package, this time is the onegiven by the discrete
simulator OMNET++ [21]; we named itsimulated time. For all the experiments, the
global convergence state is said to be reached whenεi = |xi−

∑n

i=1 yi/n| becomes
less than some fixed constantε.

Note that, in the figures next sections, the points representthe obtained results
and the curves are an extrapolation of these points.

1.4.1 Basic Behaviour

First, we show simulation results for the case where we have afixed topology with
a fixed number of nodes (50 nodes) andε = 10−4. The mean error of the nodes
ε′ =

∑n

i=1 εi/n was plotted in Figure 1.3. As expected, it can be seen that the
convergence in the synchronous mode is faster than the convergence in the asyn-
chronous one. It is also noticed that the two graphs have the same pace.

However, in many scenarios an exact average is not required,and one may be
willing to trade precision for simplicity. For instance, minimizing the number of
iterations to reduce the energy consumption can be privileged in sensor networks
applications where exact averaging is not essential.
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1.4.2 Dynamic topology

In a next step, we simulated the proposed sensor fusion scheme with dynamically
changing communication graphs. We generated the sequence of communication
graphs as follows: at each time step, each edge in the graph isonly available with
a selected probabilityp, independent of the other edges and all previous steps. To
ensure the jointly connected condition of the generated graphs, we selected a period
of time τ in which an edge cannot stay disconnected more thanτ time.

We fixed the number of sensor nodes to 50 andε = 10−4. In preliminary re-
sults, the periodτ was chosen in a way that is equal to three times the time of a
communication. We show in figure 1.4 and figure 1.5 the variation of the number of
iterations and the time simulation with the probability of link failure p. We notice
that the number of iterations and the overall time increase with the increase of the
probability, but not in an exponential way.
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Note that we also tried to run the synchronous algorithm withdynamic topology
changes, but the execution times were so prohibitive, that we abandoned those ex-
periments. These results confirm that synchronous algorithms are infeasible for real
sensor networks.

1.4.3 Larger Sensor Network

Our scheme can be applied to sensor networks where a large number of sensor nodes
are deployed, since it is fully distributed and there is no centralized control. In our
simulations we varied the number of sensor nodes from 20 to 200 nodes, deployed
in the region[0, 100] × [0, 100], we selected for all nodesi, ε = 10−4.

However, as shown in the two Figures (Figure 1.6 and Figure 1.7), as the number
of sensor nodes increases, the average of the iterations number as well as the time
needed to reach global convergence decreases in the two cases synchronous and
asynchronous. We notice that in the synchronous mode we obtained less number of
iterations, on the other hand it takes more time to reach the global convergence than
the asynchronous one.

1.5 Further Discussions

In this section, we give further consideration to our data fusion scheme from the
viewpoints of robustness to the delays and loss of messages and energy efficiency
in comparison to other existing works.

Sensor nodes are small-scale devices. Such small devices are very limited in the
amount of energy they can store or harvest from the environment. Thus, energy
efficiency is a major concern in a sensor network. In addition, many thousands of
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sensors may have to be deployed for a given task. An individual sensor’s small
effective range relative to a large area of interest makes this a requirement.

Therefore, scalability is another critical factor in the network design. Sensor net-
works are subject to frequent partial failures such as exhausted batteries, nodes de-
stroyed due to environmental factors, or communication failures due to obstacles in
the environment. Message delays can be rather high in sensornetworks due to their
typically limited communication capacity which is shared by nodes within commu-
nication range of each other. The overall operation of the sensor network should be
robust despite such partial failures.

In our scheme, we presented a scalable asynchronous method for averaging data
fusion in sensor networks. The simulations we conducted show that, the higher the
density of the deployed nodes, the more the precise of the estimation would be.
On the other hand, our algorithm is totally asynchronous, where we consider delay
transmission and loss of messages in the proposed model. These aspects which are
highly important are not taken into account in previous sensor fusion works [8, 14].
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Another important practical issue in sensor network is the power efficiency. Op-
timizing the energy consumption in sensor networks is related to minimize the num-
ber of the network communications as the radio is the main energy consumer in a
sensor node [1]. Considering the distributed iterative procedure for calculating av-
erages, the only way to minimize the energy consumption is toreduce the number
of iterations before attending the convergence. To show howwell our algorithm
saves energy, we compared our obtained results to those reported by another diffu-
sive scheme for average computation in sensor networks [8].For instance, in a static
topology our algorithm converges after69 iterations with a mean error of10−4 while
the best results in the second approach reached85 iterations for the same mean error.
For the dynamic topology mode, we obtained105 iterations, mean error10−4 and
probability of link failure0.25, while the number of iterations is very high (≈ 300
iterations) in [8].

1.6 Conclusion and Future Work

In this paper, we introduced a fault tolerant diffusion scheme for data fusion in
sensor networks. This algorithm is based on data diffusion;the nodes cooperate
and exchange their information only with their direct instantaneous neighbours. In
contrast to existing works, our algorithm does not rely on synchronization nor on
the knowledge of the global topology. We prove that under suitable assumptions, our
algorithm achieves the global convergence in the sense that, after some iterations,
each node has an estimation of the average consensus overallthe whole network.
To show the effectiveness of our algorithm, we conducted series of simulations and
studied our algorithm under various metrics.

In our scenario, we have focused on developing a reliable androbust algorithm
from the view points of asynchronism and fault tolerance in adynamically changing
topology. We have taken into account two points which don’t have been previously
addressed by other authors, namely the delays between nodesand the loss of mes-
sages. Knowing that in real sensor networks the nodes are prone to failures. One of
the near future goals is to allow nodes to be dynamically added and removed during
the execution of the data fusion algorithm. We also plan to test our algorithm in a
real-world sensor network.
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