%%%%%%%%%%%%%%%%%%%%%%% file template.tex %%%%%%%%%%%%%%%%%%%%%%%%% % % This is a general template file for the LaTeX package SVJour3 % for Springer journals. Springer Heidelberg 2010/09/16 % % Copy it to a new file with a new name and use it as the basis % for your article. Delete % signs as needed. % % This template includes a few options for different layouts and % content for various journals. Please consult a previous issue of % your journal as needed. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % First comes an example EPS file -- just ignore it and % proceed on the \documentclass line % your LaTeX will extract the file if required \begin{filecontents*}{example.eps} %!PS-Adobe-3.0 EPSF-3.0 %%BoundingBox: 19 19 221 221 %%CreationDate: Mon Sep 29 1997 %%Creator: programmed by hand (JK) %%EndComments gsave newpath 20 20 moveto 20 220 lineto 220 220 lineto 220 20 lineto closepath 2 setlinewidth gsave .4 setgray fill grestore stroke grestore \end{filecontents*} % \RequirePackage{fix-cm} % \documentclass{svjour3} % onecolumn (standard format) %\documentclass[smallcondensed]{svjour3} % onecolumn (ditto) %\documentclass[smallextended]{svjour3} % onecolumn (second format) %\documentclass[twocolumn]{svjour3} % twocolumn % \smartqed % flush right qed marks, e.g. at end of proof % \usepackage{amsmath} \usepackage{graphicx} % % \usepackage{mathptmx} % use Times fonts if available on your TeX system % % insert here the call for the packages your document requires %\usepackage{epsfig} \usepackage{epstopdf} \usepackage{tikz} \usepackage{pgfplots} \usepgfplotslibrary{groupplots} \usepackage{hyperref} \def\sup#1{$^{#1}$} \usepackage{latexsym} % etc. % % please place your own definitions here and don't use \def but % \newcommand{}{} % % Insert the name of "your journal" with % \journalname{myjournal} % \begin{document} \title{Blind digital watermarking in PDF documents using Spread Transform Dither Modulation.} %\subtitle{Do you have a subtitle?\\ If so, write it here} %\titlerunning{Short form of title} % if too long for running head \author{Ahmad W. Bitar\sup{1}, Rony Darazi\sup{1}, Jean-Fran\c{c}ois Couchot\sup{2} and Rapha\"{e}l Couturier\sup{2}} %\authorrunning{Short form of author list} % if too long for running head \institute{A. W. Bitar and R. Darazi \at Universit\'e Antonine, Hadat-Baabda, Lebanon. www.upa.edu.lb \\ % Tel.: +961-70-613855\\ %Fax: +123-45-678910\\ \email{ahmad\_bittar@hotmail.com, rony.darazi@upa.edu.lb} % \\ % \emph{Present address:} of F. Author % if needed \and J.F. Couchot and R. Couturier \at Universit\'e de Franche Comt\'e, Belfort, France. www.univ-fcomte.fr \\ \email{\{jean-francois.couchot, raphael.couturier\}@univ-fcomte.fr} } \date{Received: date / Accepted: date} % The correct dates will be entered by the editor \maketitle \begin{abstract} In this paper, a blind digital watermarking scheme for Portable Document Format (PDF) documents is proposed. The proposed method is based on a variant Quantization Index Modulation (QIM) method called Spread Transform Dither Modulation (STDM). Each bit of the secret message is embedded into a group of characters, more specifically in their $x$-coordinate values. The method exhibits experiments of two opposite objectives: transparency and robustness, and is motivated to present an acceptable distortion value that shows sufficient robustness under high density noises attacks while preserving sufficient transparency. \end{abstract} \keywords{Digital Watermarking, Portable Document Format, Quantization Index Modulation, Spread Transform Dither Modulation, Transparency, Robustness.} \section{Introduction} \label{intro} Nowadays, the security of information has become a primordial issue especially with the rapid development of numeric transmission techniques. Among the most important techniques for the protection of information, we can find Digital Watermarking, Cryptography, Fingerprint and Steganography. Digital Watermarking is the art of concealment $[1]$ which consists in hiding a message (image, text, etc.) inside a digital media (image, text, video, audio, PDF, etc.) for copyright protection, hence the high importance of the cover work. The main idea behind this technique is that once a careful user detects the presence of the hidden message, he should be unable to remove that message without strongly altering the watermarked document. Portable Document Format $[2]$, abbreviated as PDF, is a Page Description Language created by Adobe Systems Society, and considered as an evolution of PostScript format and whose specificity is to preserve the formatting of the file. Several methods of Steganography and Digital Watermarking in PDF and Text documents have been proposed. In $[3]$, a steganographic approach is presented by hiding information using inter-word and inter-paragraph spacing in a text. The main disadvantage of this method is that the hidden message can be destroyed by simply deleting some spaces between the words in the stego text. In $[4]$, two different algorithms are proposed which are considered as an alternative for the original TJ operator method. The TJ operator displays the text string in a PDF document, allows individual character positioning and uses character and word spacing parameters from the text state. The alternative method has less embedding capacity than the original method. In $[5]$, an encryption technique is proposed by combining the information hiding technique in PDF documents and the quadratic residue as basis and then apply it to copyright protection and digital learning. The main drawback of this method is that the hidden message can be easly removed. In [6], an embedding method in source programs using invisible $ASCII$ codes is proposed. This method is very easy to detect by simply extracting the modified text from the document, converting it to hexadecimal, extracting all the inserted invisible $ASCII$ characters, and then, decoding the embedded message. In [7], a data hiding in PDF files and applications by imperceivable modifications of PDF object parameters is proposed. This method serves to hide data by slight modifications of the values of various PDF object parameters such as media box and text matrices. The method is considered to have sufficient transparency while its main drawback is its very low embedding capacity. Substitutive Quantization Index Modulation (QIM) methods were introduced by Chen and Wornell $[8]$. The Spread Transform Dither Modulation (STDM) is an implementation of this scheme and it has been considered robust under different watermarking attacks $[9] [10] [11]$. In this paper, the goal is to present a blind digital watermarking scheme for PDF documents based on a variant of the Quantization Index Modulation method called Spread Transform Dither Modulation (STDM). The main difficulty in PDF documents is to find a significant watermarking space in order to embed the secret message under a sufficient Transparency-Robustness tradeoff. Our contribution consists in using the $x$-coordinates of a group of characters to embed each bit of the secret message while choosing the appropriate mean distortion value which gives the strong tradeoff between transparency and robustness. The remainder of this paper is organised as follows. In section 2, the PDF file structure is briefly summarized. Then, in section 3, a brief explanation on STDM concept is presented.~The proposed embedding method is presented in section 4. Experimental results are shown in section 5. Finally, section 6 gives concluding remarks and some directions for future work. \section{PDF File Structure} \label{sec:PDF structure} \noindent All PDF files provide a common structure decomposed into 4 components (e.g., see $[2]$) as shown in Figure~1. Here we give a very simple example in order to understand how a string can be encoded in a PDF file. \begin{center} \includegraphics[scale=0.42]{imageA.png} {\footnotesize {\bf Fig. 1} PDF document and file structure} \end{center} $\\$ {\bf Header}: contains the PDF file version. It also makes the application able to identify the file as being a PDF. $\\$ {\bf Body}: contains series of objects such as Page, Font, etc. that collectively represent a PDF document. A PDF body supports eight types of objects: Boolean, Integer, String, Name, Array, Dictionary, Stream and Null. The 1~0~obj is the Root object having 1 as identifier and 0 as generator. It is a Catalog object (/Catalog) of type dictionary ($<<$~$>>$). It contains the key version (/version) of value 1.4 (/1.4). Notice that version and 1.4 are two objects of type "name" since they are preceeded by a slash (/). It contains another key named Pages (/Pages) that represents a reference (R) to the object number 2. $\\$ \begin{center} \includegraphics[scale=0.35]{image35a.png} \\ {\footnotesize {\bf Fig. 2} Body example of the PDF shown in Figure 1} \end{center} The 2~0~obj is a Pages object (/Pages) of type Dictionary. It contains the key Count (/Count) of value 1 because there is only 1 page in the document. The key Count is an object of type Name while 1 is of type Numeric. The object also contains a reference to the object number 3 (kids [3 0 R]) in order to represent the page in more details. The 3~0~obj is a Page object (/Page) of type Dictionary. It contains the length of the page (/MediaBox), a reference to the parent object number 2, a reference to the object 4 (4~0~obj) that contains a reference to the Font object (6~0~obj). The object 3 also contains a reference to the object 5 (5~0~obj). The object 5 contains a reference to the object 7 (7~0~obj) including the length of the string, and all the information about the stream such as the font and size (Tf operator), the positioning of the string (Td operator), and the text showing (Tj operator). \textcolor{red}{In this example, "15 385 Td" represents the offset of the beginning of the current line "Steganography in the PDF documents" in the document (Td operator: move to the start of the next line and offset from the start of the current line by (tx, ty) $[2]$). Therefore, 15 and 385 refer to the x and y coordinates of the first character 'S', respectively. The other characters take their corresponding x-coordinates values depending on the spacing in horizontal writing (defined by the “Tc” operator and which is equal to zero by default (Tc=0)) between the characters}. Notice that BT and ET represent the Begin Text and End Text, respectively. Finally the object 6 (6~0~obj) contains a reference to the object 8 (8~0~obj) where this last specifies the font used (Helvetica) and the applied encoding (WinAnsiEncoding). As a result, all these objects are organized as a linked list where each node represents an object as shown in Figure 3. \\ \begin{center} \includegraphics[scale=0.45]{image36.png} \end{center} \begin{center} {\footnotesize {\bf Fig. 3} Body Linked List} \end{center} {\bf Cross-Reference Table}: each Cross-Reference table begins with a line containing the keyword xref and all the next lines are exactly 20 bytes long, including the end-of-line marker as shown on the left of Figure 4. The first number after xref says that this list starts at object 0. But a "0~0 obj" does not exist in the PDF file because it is a special sort of entry that represents the head of a linked list. That is why, the first line in this list has a "f" at the end. The second number after xref is a count of how many objects are in this Cross-Reference Table. The lines with "n" at the end refer to the objects existing in the body section. Therefore, each indirect object has its own line in the Cross-Reference table which includes the location (offset) of the object to be accessed in the body. ~~~~~~~~~~~~~~~~~~~~~~\includegraphics[scale=0.53]{image32.png} \begin{center} {\footnotesize {\bf Fig. 4} Cross-Reference Table and Trailer structures} \end{center} {\bf Trailer}: the trailer is used to find the xref table which will enable it to locate certain specific objects within the body of the file as shown on the right of Figure 4 . The trailer is a dictionary containing a link to the Root object, the total number of objects (/size 9), the keyword startxref, the offset of the Cross reference table to access it and, finally, the End Of the File (EOF). \\ The PDF file is therefore executed as follows: Header - Trailer - Cross Ref - Body. \section{Spread Transform Dither Modulation} \label{sec:STDM} \noindent %QIM concept is characterized by two properties. The first is to prevent any distortion that can occur, that is why we must have a small embedding induced distortion in order to achieve an approximation between the original and the modified sample. %\ %\ %The second property is the set of reconstruction points. In other words, we have no intersection between two samples modified by two different quantizers. In order to present the QIM based method, a bit message $m \in \{0, 1\}$ is considered to be embedded in a host signal $x$. Therefore, according to the value of the embedded bit $m$, two different dither quantizers are used. To embed the bit message $m$=0, the dither quantizer $Q_0$ is used as: \begin{equation} Q_0(x,~\Delta) = \lfloor\frac{(x-d_0)}{\Delta}\rfloor\Delta ~ +d_0 \end{equation} While $Q_1$ is used to embed the bit message $m$=1 \begin{equation} Q_1(x,~\Delta) = \lfloor\frac{(x-d_1)}{\Delta}\rfloor\Delta ~ +d_1 \end{equation} where $\Delta$ is the Quantization Step Size, also called Quantization Factor. $\lfloor.\rfloor$ denotes a rounding operation. The real values $d_0$ and $d_1$ represent the dither levels \begin{equation} d_0=-\frac{\Delta}{4} \quad \mathrm{and} \quad d_1=\frac{\Delta}{4} \end{equation} Notice that $d_0$ can also be chosen pseudo randomly from a uniform distribution over $[-\Delta/2, \Delta/2]$. In such a situation, according to the sign of $d_0$, $\Delta/2$ can be either added or subtracted from $d_0$ to form $d_1$. \begin{center} $d_1 = \begin{cases} d_0 + \Delta/2, & \mbox{if}~~d_0<0 \\ d_0 - \Delta/2, & \textrm{otherwise} \end{cases}$ \end{center} $\\$ In the STDM method, each bit of the message is inserted into a sample vector $x$ of length $L$ of the host signal and the quantization occurs entirely in the projection of the host signal using projection vector $p$. The most important advantage of this method is that the embedding-induced distortion is spread into all the groups of samples instead of into one sample only. That is why this type of dither modulation is called Spread Transform Dither Modulation. The quantized signal is given by : \begin{equation} x' = x+(Q_m(x^T p,~\Delta) - x^T p ) p \quad m \in \{ 0, 1\} \end{equation} The equation (4) can be re-written as: \begin{equation} x' = x+ ((\lfloor(\frac{(x^T p) -d_m}{\Delta})\rfloor\Delta +d_m )~ - x^T p)p \end{equation} The extraction of the embedded message can be performed by using a minimum distance decoder as of the form: \begin{equation} \textit{ExtMessage} = arg \min_{ m \in \{0, 1\}} \mid x'^T p - Q_{m} (x'^T p,~\Delta) \mid \end{equation} The average expected distortion $[7]$ is: \begin{equation} D_s = \Delta^2 / 12L \end{equation} \section{Proposed Method} \label{sec:proposition} \subsection{Embedding concept}\label{s:concept} The embedding process can be divided into 6 steps: $\\$ \noindent{\textbf{Step 1} -- The message is ciphered by applying a XOR operation between the binary message and a random secret key. Any other Cryptographic algorithm can be used. \\ \\ \noindent{\textbf{Step 2} -- The original document is read, and then all the necessary resources ($x$-coordinate, $y$-coordinate, width, height, etc.) are founded of each character that exists in the document. Let $k$ be the length of the binary cipher message. Thus the algorithm requires $k \times L$ ressources to embed the whole secret message. \\ \\ \noindent{\textbf{Step 3} -- The host signal is created and which corresponds to the $x$-coordinates of all the selected characters to be modified or quantized. \\ \\ \noindent{\textbf{Step 4} -- Each bit of the encoded message is embedded into $L$ different values ($L \geq 1$) of the host signal created in step 3 corresponding to the $x$-coordinate of the characters to be modified. The embedding function is applied as shown in equation (4). \\ Assume that $m_0$ and $m_1$ shown in Figure 5 are two bits of the secret message to be embedded in the $x$-coordinate values, where $L$=8. Thus, to embed $m_0$, both the quantizer $Q_0$ and the dither level $d_0$ are used, while $Q_1$ and $d_1$ are used to embed $m_1$. $\\$$\\$ \begin{center} \includegraphics[scale=0.50]{image30.png} \end{center} \begin{center} {\footnotesize {\bf Fig. 5} Basic embedding example using 2 bits and $L$=8} \end{center} $\\$ As a result, to embed a message formed by $k$ bits into the document where each bit is embedded into $L$ samples, we need $k \times L$ characters to modify. In other words, each character in the document has its own $(x,y)$, therefore, if $L$ is chosen to be 8, each bit of the encoded message being inserted into 8 values that correspond to the x-coordinate of 8 characters $(x_0, y_0), (x_1, y_1), (x_2, y_2), (x_3, y_3)$, $(x_4, y_4), (x_5, y_5), (x_6, y_6), (x_7, y_7)$. \\ After the embedding process, the 8 characters become: $\\$ $(x'_0, y_0), (x'_1, y_1), (x'_2, y_2), (x'_3, y_3), (x'_4, y_4)$, $(x'_5, y_5), (x'_6, y_6), (x'_7, y_7)$ where $x'_i$ is calculated as in equation (5). \\ %Notice that the degradation of the embedding process depends of the value of $\Delta$ and the number of samples chosen to conceal each bit of the message. Thus, for signals which contain a lot of information, the degradation of quality must be a serious %problem. That's why, to select the value of $\Delta$, it's necessary to consider the quality of original object, \\ \noindent{\textbf{Step 5} -- After the embedding process, each character $a_i$ takes its corresponding modified coordinate $(x'_i, y)$ and be re-written separately in the document as shown in (b) of Figure 6, \begin{center} \includegraphics[scale=0.63]{image37.png} \end{center} \begin{center} {\footnotesize {\bf Fig. 6} (a) Original document, (b) Watermarked document} \end{center} \noindent{\textbf{Step 6} -- Finally, the embedded message can be extracted by applying equation (6).\\ \subsection{Discussion problem}\label{s:discussionr} \noindent Equation (7) has shown that the distortion is quadratic in $\Delta$ for a given $L$. We have represented this function in Figure 7 with $0 \leq \Delta \leq 3$ and $0 \leq L \leq 100$. \begin{center} \includegraphics[scale=0.54]{myfig.eps}\\ {\footnotesize {\bf Fig. 7} 3D representation of the distortion $D_{s}$} \end{center} The user is then left to choose a $D_s$ value that would lead a sufficient robustness with sufficient transparency. In the proposed method, some distortions are considered acceptable whereas others are not. But the remaining question to be solved is "What makes a distortion acceptable". In other words, what is the value of $D_s$ for which the method shows sufficient robustness with sufficient transparency. However, transparency and robustness are two opposite objectives. In our method, there are basically two threshold levels to consider, namely $a$ and $b$. The transparency threshold level $a$ is always computed by the transparency experiments while the robustness threshold level $b$ is computed by the robustness experiments. If the distortion $D_s$ is inferior to $a$, we thus have a sufficient transparency. On the opposite, if $D_s$ is greater than $b$, the method ensures sufficient robustness (but weak transparency). There are thus two cases to consider: the former is when $a$ is inferior to $b$. In such a situation, for any value of $D_s$, the corresponding distortion is either inferior to $b$ (and the robustness is not established) or greater than $a$ and the transparency is weak. The latter is when $b \le a$. In such a situation, the interval $b \le D_s \le a$ corresponds to the acceptable distortion values that can show sufficient robustness with sufficient transparency. Let us consider an example which includes both cases: {\em If $b$ = 0.5 and $a$ = 0.2} in this case, we have $b$ $>$ $a$ and $D_s$ can either be greater than or equal to 0.5 (sufficient robustness with weak transparency) or inferior to 0.5. In this latter case, $D_s$ can either belong to the interval [0.2 ~ 0.5[ (weak robustness with weak transparency), or be inferior to 0.2 (weak robustness with sufficient transparency). {\em If $b$ = 0.2 and $a$ = 0.5} in this case, we have $b$ $\leq$ a and $D_s$ can either be greater than 0.5 (sufficient robustness with weak transparency) or inferior than or equal to 0.5. In this latter case, $D_s$ can either belong to the interval [0.2 ~ 0.5] ({\bf sufficient robustness with sufficient transparency}), or be inferior to 0.2 (weak robustness with sufficient transparency). \section{Experiments} \label{s:experiments} \noindent Several transparency and robustness experiments are performed in order to deduce the strong approximation values of $a$ and $b$. All the experiments were computed by function of $\Delta$. Three cases can be considered: \begin{itemize} \item {\bf Case 1}: a balance between the number of characters (length) in the document and the message to be embedded. \item {\bf Case 2}: the number of characters in the document is increased in order to have a large document while keeping the same message length used in case 1. \item {\bf Case 3}: the length of the message is shortened while keeping the same length of the document used in case 1. \end{itemize} The threshold values of $a$ and $b$ are thus deduced from case 1 since they are always accepted by both cases 2 and 3. It can be explained by the fact that both cases 2 and 3 are able to represent better transparency-robustness tradeoff than case 1. In order to argument our approach, we present a brief example on a PDF document and message of case 1. The proposed method has been implemented in JAVA using the Netbeans program. Let us consider the original document : Violin.pdf shown in the top-left hand side of Figure 8 and the message to be embedded : UFC. The violin document contains $n$ = 947 characters. Each character of the message is encoded into 8 bits in order to form a total of $k$ = 24 bits. Each bit message is then embedded into $L$ = $E(n / k = 39.458) = 39$ characters' x-coordinates extracted during step 2 of section 4. Therefore, a total of $k \times L$ = 936 characters are used from the document to embed the whole 24 bits of the message. \subsection{Tests of Transparency (Violin.pdf, UFC)}\label{s:transparency evaluations} \noindent Three different kinds of experiments (error measurements, perceptual PDF differences and distortion plots) are presented in order to test the transparency of the proposed method under several values of $\Delta$: 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 5 and 10. Table~1 presents error measurements between the original and the modified documents after watermarking using three different metrics: Mean Square Error (MSE), Root Square Error (RSE) and Mean Absolute Error (MAE). The results show that error values increase when $\Delta$ increases. Figure 8 exhibits a perceptual difference between the original and modified document and the results show a slight modification in the characters' position when $\Delta$ is small while notable modification when $\Delta$ is high (equal to 5 or 10 for example). Figure 9 exhibits clearly how the positioning of some characters after watermarking is affected by simply comparing the deviation of the $x$ marks in relation to the center of $o$ marks. The $x$ marks are exactly centered into the $o$ marks when the distortion is very low. $\\$ $\\$ {\footnotesize {\bf Table 1} Error computations between the original and modified violin documents in terms of their x-coordinate values} \begin{center} \resizebox{6.32cm}{!}{ \begin{tabular}{ | l | l | l | | l |} \hline ~~~~~~~~~Error tests & ~~~~~~MSE & ~RSE & ~MAE\\ \hline \bf {$\Delta$}=\bf 0.1 ($\bf D_s$ = \bf 0.00002) & $\bf 2.5527 \times 10^{-5}$ & \bf 0.0051 & \bf 0.0038\\ \hline \bf {$\Delta$}=\bf 0.5 ($\bf D_s$ = \bf 0.00053) & $\bf 6.2815 \times 10^{-4}$ & \bf 0.0251 & \bf 0.0195\\ \hline \bf {$\Delta$}=\bf 1 ($\bf D_s$ = \bf 0.00214) & \bf 0.0020 & \bf 0.0449 & \bf 0.0338\\ \hline \bf {$\Delta$}=\bf 1.5 ($\bf D_s$ = \bf 0.00481) & \bf 0.0063 & \bf 0.0794 & \bf 0.0619\\ \hline \bf {$\Delta$}=\bf 2 ($\bf D_s$ = \bf 0.00855) & \bf 0.0118 & \bf 0.1085 & \bf 0.0898\\ \hline \bf {$\Delta$}=\bf 2.5 ($ \bf D_s$ = \bf 0.01335) & \bf 0.0127 & \bf 0.1129 & \bf 0.09\\ \hline $\Delta$=3 ($D_s$ = 0.01923) & 0.0222 & 0.1491 & 0.1082\\ \hline $\Delta$=5 ($D_s$ = 0.05342) & 0.0537 & 0.2317 & 0.1675\\ \hline $\Delta$=10 ($D_s$ = 0.21367) & 0.1696 & 0.4118 & 0.2904\\ \hline \end{tabular} } \end{center} \begin{figure*} \includegraphics[scale=0.36]{picturee1.png} \includegraphics[scale=0.36]{picturee2.png} \includegraphics[scale=0.36]{picturee3.png} \includegraphics[scale=0.36]{picturee4.png} \includegraphics[scale=0.36]{picturee5.png} {\footnotesize {\bf Fig. 8} Perceptual PDF difference-- violin.pdf and modified\_violin.pdf using $\Delta=0.1,~\Delta=0.5,~\Delta=1,~\Delta=1.5,~\Delta=2,~\Delta=2.5,~\Delta=3,~\Delta=5$~and~$\Delta=10$, respectively. The document shown in the top-left hand side is the original document.} \end{figure*} \begin{figure*}[t] \begin{tikzpicture} \begin{groupplot}[group style={group size=3 by 3}, width=0.405\textwidth] \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 15.0035 31.0000 21.8700 31.0000 28.1370 31.0000 34.4019 31.0000 37.9762 31.0000 43.6237 31.0000 46.2147 31.0000 52.4760 31.0000 55.0632 31.0000 57.6481 31.0000 15.0034 47.0000 20.6097 47.0000 23.7773 47.0000 27.5500 47.0000 30.1017 47.0000 36.3273 47.0000 42.5529 47.0000 48.1626 47.0000 51.6042 47.0000 54.7718 47.0000 14.9946 63.0000 18.2104 63.0000 24.4733 63.0000 30.7414 63.0000 34.3222 63.0000 39.9705 63.0000 42.5613 63.0000 48.8275 63.0000 51.4162 63.0000 57.6788 63.0000 15.0096 79.0000 21.3482 79.0000 27.7061 79.0000 34.0648 79.0000 37.9565 79.0000 44.3103 79.0000 50.6670 79.0000 57.0229 79.0000 63.3767 79.0000 66.0616 79.0000 14.9993 95.0000 18.1252 95.0000 20.6349 95.0000 26.8200 95.0000 33.0034 95.0000 39.1868 95.0000 42.9181 95.0000 46.0440 95.0000 49.3383 95.0000 56.1223 95.0000 15.0008 111.0000 20.5179 111.0000 23.5879 111.0000 27.2693 111.0000 29.7324 111.0000 35.8713 111.0000 41.9882 111.0000 47.5079 111.0000 50.6264 111.0000 54.3310 111.0000 14.9990 127.0000 18.3258 127.0000 24.7026 127.0000 27.4118 127.0000 30.1188 127.0000 34.1031 127.0000 38.0315 127.0000 44.4138 127.0000 50.7967 127.0000 57.1725 127.0000 15.0000 143.0000 20.7797 143.0000 27.1753 143.0000 31.1182 143.0000 33.8398 143.0000 40.2357 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 14.9986 159.0000 20.7760 159.0000 27.1577 159.0000 31.1037 159.0000 33.8199 159.0000 40.2022 159.0000 43.5326 159.0000 49.3067 159.0000 53.3155 159.0000 59.7144 159.0000 15.0014 175.0000 24.4240 175.0000 30.7988 175.0000 36.5590 175.0000 39.2629 175.0000 45.0251 175.0000 48.3424 175.0000 52.3156 175.0000 56.2359 175.0000 62.6124 175.0000 14.9983 191.0000 24.1768 191.0000 30.3112 191.0000 36.4485 191.0000 41.9691 191.0000 45.0959 191.0000 51.2355 191.0000 57.3754 191.0000 63.5185 191.0000 67.2034 191.0000 14.9979 207.0000 18.1168 207.0000 21.8325 207.0000 27.9820 207.0000 37.1976 207.0000 40.4372 207.0000 43.5408 207.0000 49.7056 207.0000 55.8738 207.0000 59.1101 207.0000 14.9882 223.0000 17.4551 223.0000 22.9475 223.0000 25.9979 223.0000 32.1239 223.0000 34.5677 223.0000 40.0507 223.0000 46.1672 223.0000 49.2297 223.0000 55.3394 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 14.9938 31.0000 21.8573 31.0000 28.1370 31.0000 34.3844 31.0000 37.9783 31.0000 43.6188 31.0000 46.1933 31.0000 52.4785 31.0000 55.0530 31.0000 57.6605 31.0000 14.9962 47.0000 20.5850 47.0000 23.7320 47.0000 27.5677 47.0000 30.0549 47.0000 36.3546 47.0000 42.5514 47.0000 48.1007 47.0000 51.6274 47.0000 54.7347 47.0000 15.0089 63.0000 18.1882 63.0000 24.4375 63.0000 30.7507 63.0000 34.2812 63.0000 39.9868 63.0000 42.5558 63.0000 48.7748 63.0000 51.4307 63.0000 57.6497 63.0000 15.0166 79.0000 21.3655 79.0000 27.7061 79.0000 34.0575 79.0000 37.9664 79.0000 44.3090 79.0000 50.6793 79.0000 57.0291 79.0000 63.3726 79.0000 66.0710 79.0000 15.0479 95.0000 18.1349 95.0000 20.5941 95.0000 26.7649 95.0000 32.9461 95.0000 39.1610 95.0000 42.9293 95.0000 46.0240 95.0000 49.3270 95.0000 56.1125 95.0000 15.0111 111.0000 20.5276 111.0000 23.5883 111.0000 27.2801 111.0000 29.7413 111.0000 35.8777 111.0000 42.0092 111.0000 47.5198 111.0000 50.6304 111.0000 54.3087 111.0000 14.9702 127.0000 18.3356 127.0000 24.7176 127.0000 27.4513 127.0000 30.1543 127.0000 34.0874 127.0000 38.0553 127.0000 44.4423 127.0000 50.8334 127.0000 57.2071 127.0000 14.9900 143.0000 20.7672 143.0000 27.1667 143.0000 31.0956 143.0000 33.8493 143.0000 40.2456 143.0000 43.6034 143.0000 49.3800 143.0000 53.3769 143.0000 59.8027 143.0000 14.9952 159.0000 20.7346 159.0000 27.1472 159.0000 31.0574 159.0000 33.8222 159.0000 40.2299 159.0000 43.5196 159.0000 49.2891 159.0000 53.3096 159.0000 59.6777 159.0000 14.9758 175.0000 24.4621 175.0000 30.7663 175.0000 36.5441 175.0000 39.2354 175.0000 45.0175 175.0000 48.2864 175.0000 52.2911 175.0000 56.1764 175.0000 62.6257 175.0000 15.0427 191.0000 24.1663 191.0000 30.3633 191.0000 36.4296 191.0000 41.9769 191.0000 45.1624 191.0000 51.2184 191.0000 57.4115 191.0000 63.4816 191.0000 67.1803 191.0000 14.9924 207.0000 18.1123 207.0000 21.8169 207.0000 27.9860 207.0000 37.1979 207.0000 40.4293 207.0000 43.5518 207.0000 49.7047 207.0000 55.8876 207.0000 59.1172 207.0000 14.9939 223.0000 17.4340 223.0000 22.9336 223.0000 25.9962 223.0000 32.1177 223.0000 34.5551 223.0000 40.0563 223.0000 46.1929 223.0000 49.2667 223.0000 55.3343 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 15.0496 31.0000 21.9793 31.0000 28.0581 31.0000 34.4774 31.0000 38.0751 31.0000 43.7139 31.0000 46.2630 31.0000 52.4275 31.0000 55.0353 31.0000 57.5890 31.0000 14.9968 47.0000 20.6263 47.0000 23.8144 47.0000 27.5249 47.0000 30.1288 47.0000 36.3620 47.0000 42.5846 47.0000 48.1806 47.0000 51.5890 47.0000 54.7627 47.0000 14.9983 63.0000 18.2155 63.0000 24.4910 63.0000 30.7244 63.0000 34.3306 63.0000 39.9835 63.0000 42.5730 63.0000 48.8311 63.0000 51.4052 63.0000 57.6734 63.0000 15.0572 79.0000 21.3616 79.0000 27.7333 79.0000 34.1161 79.0000 37.9294 79.0000 44.3547 79.0000 50.7204 79.0000 57.0718 79.0000 63.4091 79.0000 66.0461 79.0000 15.0014 95.0000 18.1292 95.0000 20.6384 95.0000 26.8152 95.0000 33.0003 95.0000 39.1917 95.0000 42.9139 95.0000 46.0483 95.0000 49.3392 95.0000 56.0769 95.0000 14.9946 111.0000 20.5326 111.0000 23.5893 111.0000 27.2621 111.0000 29.7196 111.0000 35.8634 111.0000 42.0048 111.0000 47.5281 111.0000 50.6459 111.0000 54.3064 111.0000 14.9634 127.0000 18.2985 127.0000 24.7260 127.0000 27.3981 127.0000 30.1560 127.0000 34.0951 127.0000 38.0038 127.0000 44.3797 127.0000 50.7863 127.0000 57.1869 127.0000 15.0002 143.0000 20.7801 143.0000 27.1751 143.0000 31.1187 143.0000 33.8402 143.0000 40.2353 143.0000 43.5735 143.0000 49.3525 143.0000 53.3902 143.0000 59.7862 143.0000 15.0227 159.0000 20.7960 159.0000 27.1633 159.0000 31.1262 159.0000 33.8397 159.0000 40.2219 159.0000 43.5455 159.0000 49.3324 159.0000 53.2999 159.0000 59.7443 159.0000 15.0466 175.0000 24.4517 175.0000 30.8657 175.0000 36.5612 175.0000 39.2872 175.0000 45.1062 175.0000 48.4250 175.0000 52.3162 175.0000 56.3355 175.0000 62.7052 175.0000 15.0009 191.0000 24.1825 191.0000 30.3200 191.0000 36.4564 191.0000 41.9764 191.0000 45.1047 191.0000 51.2400 191.0000 57.3763 191.0000 63.5122 191.0000 67.1958 191.0000 14.8991 207.0000 18.1900 207.0000 21.7196 207.0000 27.9785 207.0000 37.2341 207.0000 40.5078 207.0000 43.5017 207.0000 49.7653 207.0000 55.9461 207.0000 59.1764 207.0000 14.9633 223.0000 17.4964 223.0000 22.9787 223.0000 25.9374 223.0000 32.1663 223.0000 34.4940 223.0000 40.0512 223.0000 46.2137 223.0000 49.3204 223.0000 55.2885 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 15.1296 31.0000 21.9618 31.0000 28.2156 31.0000 34.2767 31.0000 38.0976 31.0000 43.4696 31.0000 46.1557 31.0000 52.3265 31.0000 55.0923 31.0000 57.6920 31.0000 15.0012 47.0000 20.7093 47.0000 23.8488 47.0000 27.6138 47.0000 30.0096 47.0000 36.4242 47.0000 42.4378 47.0000 48.1215 47.0000 51.4917 47.0000 54.7947 47.0000 14.9881 63.0000 18.1131 63.0000 24.4046 63.0000 30.6769 63.0000 34.4035 63.0000 39.8743 63.0000 42.6652 63.0000 48.8604 63.0000 51.5189 63.0000 57.6563 63.0000 15.1085 79.0000 21.3410 79.0000 27.8561 79.0000 34.1707 79.0000 38.0558 79.0000 44.1844 79.0000 50.8152 79.0000 56.8619 79.0000 63.3253 79.0000 65.9027 79.0000 14.9891 95.0000 18.1928 95.0000 20.6573 95.0000 26.7686 95.0000 33.0230 95.0000 39.1344 95.0000 42.9322 95.0000 45.9620 95.0000 49.3496 95.0000 56.0565 95.0000 15.1253 111.0000 20.3627 111.0000 23.5503 111.0000 27.3430 111.0000 29.6048 111.0000 36.0318 111.0000 42.0204 111.0000 47.3962 111.0000 50.5982 111.0000 54.4107 111.0000 14.8666 127.0000 18.4526 127.0000 24.5670 127.0000 27.2624 127.0000 30.3031 127.0000 34.1558 127.0000 37.9506 127.0000 44.5671 127.0000 50.5991 127.0000 57.1529 127.0000 14.9876 143.0000 20.8123 143.0000 27.1785 143.0000 31.0918 143.0000 33.8655 143.0000 40.2085 143.0000 43.5439 143.0000 49.3895 143.0000 53.4002 143.0000 59.7695 143.0000 15.0920 159.0000 20.8587 159.0000 27.1277 159.0000 31.0487 159.0000 33.8385 159.0000 40.1468 159.0000 43.5701 159.0000 49.2165 159.0000 53.3144 159.0000 59.7870 159.0000 14.8382 175.0000 24.4568 175.0000 30.8446 175.0000 36.5648 175.0000 39.2528 175.0000 45.1791 175.0000 48.4868 175.0000 52.2550 175.0000 56.1530 175.0000 62.6547 175.0000 15.1118 191.0000 24.2830 191.0000 30.1756 191.0000 36.6072 191.0000 41.7960 191.0000 45.0403 191.0000 51.0647 191.0000 57.4125 191.0000 63.5606 191.0000 67.1998 191.0000 14.9736 207.0000 18.1161 207.0000 21.7817 207.0000 27.9949 207.0000 37.3453 207.0000 40.5411 207.0000 43.6390 207.0000 49.5837 207.0000 56.0200 207.0000 58.9536 207.0000 15.0045 223.0000 17.4315 223.0000 22.9461 223.0000 25.9891 223.0000 32.1190 223.0000 34.5411 223.0000 40.0603 223.0000 46.0193 223.0000 49.1209 223.0000 55.2488 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 14.9875 31.0000 21.8364 31.0000 28.1193 31.0000 34.3632 31.0000 37.9470 31.0000 43.6363 31.0000 46.1917 31.0000 52.4442 31.0000 55.0465 31.0000 57.6667 31.0000 15.0041 47.0000 20.5137 47.0000 23.5299 47.0000 27.4489 47.0000 29.8491 47.0000 36.1403 47.0000 42.6841 47.0000 48.0311 47.0000 51.3870 47.0000 54.6506 47.0000 15.0086 63.0000 18.2798 63.0000 24.6597 63.0000 30.8137 63.0000 34.5082 63.0000 40.1075 63.0000 42.4573 63.0000 48.9215 63.0000 51.5776 63.0000 57.7699 63.0000 14.9755 79.0000 21.3653 79.0000 27.7655 79.0000 34.2071 79.0000 38.0202 79.0000 44.4618 79.0000 50.7800 79.0000 56.9547 79.0000 63.4595 79.0000 66.1898 79.0000 14.9189 95.0000 17.8823 95.0000 20.8232 95.0000 26.6215 95.0000 32.9220 95.0000 39.0956 95.0000 42.8162 95.0000 46.0942 95.0000 49.3184 95.0000 56.0468 95.0000 15.0235 111.0000 20.6306 111.0000 23.7392 111.0000 27.3727 111.0000 29.5874 111.0000 35.6928 111.0000 41.9253 111.0000 47.2922 111.0000 50.8120 111.0000 54.1348 111.0000 15.0745 127.0000 18.1946 127.0000 24.7558 127.0000 27.4244 127.0000 30.1804 127.0000 34.1845 127.0000 38.0869 127.0000 44.3344 127.0000 50.7002 127.0000 57.1353 127.0000 14.9405 143.0000 20.7530 143.0000 27.2576 143.0000 31.1777 143.0000 33.7372 143.0000 40.2767 143.0000 43.5836 143.0000 49.4023 143.0000 53.4537 143.0000 59.8289 143.0000 15.1994 159.0000 21.0126 159.0000 27.3422 159.0000 30.9694 159.0000 33.7346 159.0000 40.1140 159.0000 43.6797 159.0000 49.3733 159.0000 53.1238 159.0000 59.5680 159.0000 14.9376 175.0000 24.3889 175.0000 30.8323 175.0000 36.5133 175.0000 39.2494 175.0000 44.9666 175.0000 48.2737 175.0000 52.2616 175.0000 56.2753 175.0000 62.6375 175.0000 14.8433 191.0000 24.1192 191.0000 30.1594 191.0000 36.3371 191.0000 42.0588 191.0000 45.0210 191.0000 51.1028 191.0000 57.2998 191.0000 63.5831 191.0000 67.0903 191.0000 14.9996 207.0000 18.1083 207.0000 21.8229 207.0000 27.9894 207.0000 37.2852 207.0000 40.6505 207.0000 43.6342 207.0000 49.9304 207.0000 56.0412 207.0000 59.0053 207.0000 15.1548 223.0000 17.2788 223.0000 22.8750 223.0000 25.9247 223.0000 32.0323 223.0000 34.5999 223.0000 40.0413 223.0000 46.2465 223.0000 49.4190 223.0000 55.4243 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 14.8611 31.0000 22.1582 31.0000 28.0167 31.0000 34.4194 31.0000 37.8440 31.0000 43.8680 31.0000 45.9484 31.0000 52.2064 31.0000 54.9177 31.0000 57.6695 31.0000 15.0332 47.0000 20.6869 47.0000 23.6164 47.0000 27.6142 47.0000 30.0887 47.0000 36.3979 47.0000 42.4144 47.0000 48.3072 47.0000 51.7521 47.0000 54.8522 47.0000 15.1378 63.0000 18.2175 63.0000 24.4503 63.0000 30.7458 63.0000 34.3150 63.0000 39.9754 63.0000 42.5381 63.0000 48.8415 63.0000 51.4330 63.0000 57.6889 63.0000 15.0277 79.0000 21.5712 79.0000 27.5866 79.0000 34.3258 79.0000 37.8591 79.0000 44.3391 79.0000 50.5598 79.0000 57.2523 79.0000 63.1515 79.0000 65.8279 79.0000 15.0254 95.0000 18.1369 95.0000 20.6943 95.0000 26.7797 95.0000 32.9904 95.0000 39.1758 95.0000 42.9653 95.0000 46.0514 95.0000 49.4006 95.0000 56.2746 95.0000 15.2414 111.0000 20.2601 111.0000 23.5181 111.0000 27.2738 111.0000 29.8943 111.0000 35.6203 111.0000 41.9148 111.0000 47.4807 111.0000 50.4393 111.0000 54.4525 111.0000 15.0284 127.0000 18.3941 127.0000 24.7280 127.0000 27.3406 127.0000 30.1943 127.0000 34.1268 127.0000 38.0330 127.0000 44.3669 127.0000 50.8678 127.0000 57.2017 127.0000 14.9984 143.0000 20.8545 143.0000 27.1341 143.0000 31.1468 143.0000 33.9114 143.0000 40.2595 143.0000 43.5018 143.0000 49.4294 143.0000 53.4123 143.0000 59.7858 143.0000 15.0468 159.0000 20.6329 159.0000 27.1263 159.0000 30.9014 159.0000 33.5752 159.0000 40.3078 159.0000 43.5403 159.0000 49.0640 159.0000 53.4584 159.0000 59.6189 159.0000 14.8670 175.0000 24.3514 175.0000 30.8091 175.0000 36.4310 175.0000 39.3680 175.0000 44.9986 175.0000 48.4214 175.0000 52.3341 175.0000 56.3475 175.0000 62.7473 175.0000 15.0914 191.0000 24.1466 191.0000 30.3266 191.0000 36.4153 191.0000 42.0542 191.0000 45.0220 191.0000 51.1563 191.0000 57.3308 191.0000 63.5182 191.0000 67.1136 191.0000 14.9847 207.0000 18.1745 207.0000 21.8336 207.0000 28.0749 207.0000 37.1093 207.0000 40.6349 207.0000 43.4697 207.0000 49.7305 207.0000 55.7955 207.0000 59.2858 207.0000 14.8677 223.0000 17.5314 223.0000 22.9706 223.0000 26.0250 223.0000 32.0087 223.0000 34.5401 223.0000 39.9186 223.0000 46.3026 223.0000 48.9641 223.0000 55.4552 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 15.1551 31.0000 22.1218 31.0000 28.1488 31.0000 34.0370 31.0000 37.8489 31.0000 43.6763 31.0000 46.3885 31.0000 52.2849 31.0000 55.2502 31.0000 57.6848 31.0000 15.0245 47.0000 20.7356 47.0000 23.9829 47.0000 27.5632 47.0000 29.8097 47.0000 36.2277 47.0000 42.5992 47.0000 48.3083 47.0000 51.4516 47.0000 54.9243 47.0000 14.9650 63.0000 18.2958 63.0000 24.6168 63.0000 30.7465 63.0000 34.1113 63.0000 39.8958 63.0000 42.5895 63.0000 48.9246 63.0000 51.3055 63.0000 57.7854 63.0000 15.2970 79.0000 21.2789 79.0000 27.5337 79.0000 33.7773 79.0000 37.9442 79.0000 44.7289 79.0000 50.8138 79.0000 56.9640 79.0000 63.1796 79.0000 66.2810 79.0000 15.0031 95.0000 18.1382 95.0000 20.6436 95.0000 26.8111 95.0000 32.9956 95.0000 39.1804 95.0000 42.9110 95.0000 46.0515 95.0000 49.3366 95.0000 56.1715 95.0000 15.0596 111.0000 20.5772 111.0000 23.6188 111.0000 27.3845 111.0000 29.4523 111.0000 36.0970 111.0000 42.1028 111.0000 47.9271 111.0000 50.9018 111.0000 54.0458 111.0000 14.8845 127.0000 18.0509 127.0000 24.7786 127.0000 27.4693 127.0000 30.1764 127.0000 34.1295 127.0000 38.1402 127.0000 44.1418 127.0000 51.0181 127.0000 57.2755 127.0000 15.1479 143.0000 20.7586 143.0000 27.0517 143.0000 31.1604 143.0000 33.9395 143.0000 40.2084 143.0000 43.5522 143.0000 49.3319 143.0000 53.3810 143.0000 59.7465 143.0000 14.9922 159.0000 20.7666 159.0000 27.1307 159.0000 31.1271 159.0000 33.7776 159.0000 40.1999 159.0000 43.5826 159.0000 49.3017 159.0000 53.2835 159.0000 59.7261 159.0000 14.8212 175.0000 24.6025 175.0000 30.8315 175.0000 36.5145 175.0000 39.1939 175.0000 45.0868 175.0000 48.3977 175.0000 52.5704 175.0000 56.0121 175.0000 62.9097 175.0000 14.9848 191.0000 24.1822 191.0000 30.3408 191.0000 36.4628 191.0000 41.9722 191.0000 45.0934 191.0000 51.2516 191.0000 57.3653 191.0000 63.5107 191.0000 67.1988 191.0000 15.0433 207.0000 18.1538 207.0000 21.7690 207.0000 28.0033 207.0000 37.0726 207.0000 40.2260 207.0000 43.5342 207.0000 50.0173 207.0000 55.9847 207.0000 59.0694 207.0000 15.2217 223.0000 17.2131 223.0000 22.7346 223.0000 25.8212 223.0000 31.9300 223.0000 34.7797 223.0000 40.0008 223.0000 46.2200 223.0000 49.3070 223.0000 55.3528 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 14.9596 31.0000 21.8745 31.0000 28.1806 31.0000 34.3510 31.0000 37.9916 31.0000 43.6143 31.0000 46.2070 31.0000 52.5121 31.0000 55.1048 31.0000 57.6666 31.0000 15.1330 47.0000 20.3023 47.0000 23.8212 47.0000 27.9157 47.0000 29.7576 47.0000 36.4808 47.0000 42.5162 47.0000 48.1478 47.0000 51.9041 47.0000 55.0937 47.0000 15.1922 63.0000 18.3426 63.0000 24.4527 63.0000 30.5758 63.0000 34.4685 63.0000 39.8980 63.0000 42.5730 63.0000 48.8284 63.0000 51.2806 63.0000 57.5360 63.0000 14.9653 79.0000 21.1818 79.0000 28.0234 79.0000 34.0219 79.0000 37.5910 79.0000 44.6679 79.0000 50.5177 79.0000 57.0665 79.0000 63.3997 79.0000 65.7614 79.0000 14.9977 95.0000 18.1239 95.0000 20.6342 95.0000 26.8161 95.0000 33.0198 95.0000 39.2069 95.0000 42.8996 95.0000 46.0421 95.0000 49.3317 95.0000 56.4547 95.0000 14.9528 111.0000 20.4731 111.0000 23.5867 111.0000 27.3170 111.0000 29.6810 111.0000 35.8146 111.0000 42.0072 111.0000 47.5234 111.0000 50.6417 111.0000 54.3276 111.0000 15.0460 127.0000 17.8996 127.0000 24.3821 127.0000 27.7430 127.0000 30.4317 127.0000 34.1508 127.0000 37.7291 127.0000 44.7824 127.0000 51.1636 127.0000 57.1304 127.0000 14.5165 143.0000 20.8704 143.0000 27.5582 143.0000 31.0678 143.0000 34.3032 143.0000 40.5881 143.0000 43.2107 143.0000 49.0106 143.0000 53.3397 143.0000 60.1182 143.0000 14.7113 159.0000 21.0883 159.0000 27.2939 159.0000 31.1253 159.0000 33.8756 159.0000 40.1863 159.0000 43.9551 159.0000 49.2297 159.0000 52.9907 159.0000 59.7563 159.0000 14.7290 175.0000 24.1329 175.0000 30.7013 175.0000 36.3893 175.0000 39.3895 175.0000 45.2427 175.0000 48.1054 175.0000 52.2147 175.0000 56.2177 175.0000 62.5680 175.0000 15.0565 191.0000 24.6538 191.0000 29.8769 191.0000 36.6532 191.0000 41.9286 191.0000 45.0854 191.0000 51.6263 191.0000 57.7907 191.0000 63.6539 191.0000 67.4406 191.0000 15.2421 207.0000 17.8892 207.0000 21.8057 207.0000 27.9050 207.0000 36.8341 207.0000 40.4919 207.0000 43.9875 207.0000 49.3016 207.0000 56.0662 207.0000 59.0735 207.0000 14.9893 223.0000 17.4171 223.0000 23.0702 223.0000 26.1531 223.0000 31.9771 223.0000 34.5473 223.0000 40.0046 223.0000 46.0855 223.0000 49.2447 223.0000 55.4534 223.0000 }; \nextgroupplot[ axis lines=middle, xmax=65, ymax=224,, xlabel=$X-axis$, ylabel=$Y-axis$, xtick=\empty, ytick=\empty] \addplot [only marks, mark=o] table { 15.0000 31.0000 21.8687 31.0000 28.1325 31.0000 34.3963 31.0000 37.9714 31.0000 43.6191 31.0000 46.2089 31.0000 52.4726 31.0000 55.0624 31.0000 57.6521 31.0000 15.0000 47.0000 20.6096 47.0000 23.7773 47.0000 27.5499 47.0000 30.1015 47.0000 36.3272 47.0000 42.5528 47.0000 48.1624 47.0000 51.6041 47.0000 54.7717 47.0000 15.0000 63.0000 18.2070 63.0000 24.4721 63.0000 30.7371 63.0000 34.3168 63.0000 39.9658 63.0000 42.5569 63.0000 48.8219 63.0000 51.4129 63.0000 57.6780 63.0000 15.0000 79.0000 21.3555 79.0000 27.7110 79.0000 34.0665 79.0000 37.9628 79.0000 44.3183 79.0000 50.6738 79.0000 57.0293 79.0000 63.3849 79.0000 66.0664 79.0000 15.0000 95.0000 18.1258 95.0000 20.6356 95.0000 26.8193 95.0000 33.0031 95.0000 39.1869 95.0000 42.9177 95.0000 46.0435 95.0000 49.3387 95.0000 56.1275 95.0000 15.0000 111.0000 20.5176 111.0000 23.5932 111.0000 27.2738 111.0000 29.7334 111.0000 35.8670 111.0000 42.0006 111.0000 47.5182 111.0000 50.6378 111.0000 54.3184 111.0000 15.0000 127.0000 18.3232 127.0000 24.7043 127.0000 27.4115 127.0000 30.1187 127.0000 34.1048 127.0000 38.0330 127.0000 44.4141 127.0000 50.7953 127.0000 57.1765 127.0000 15.0000 143.0000 20.7797 143.0000 27.1754 143.0000 31.1182 143.0000 33.8399 143.0000 40.2356 143.0000 43.5733 143.0000 49.3530 143.0000 53.3901 143.0000 59.7858 143.0000 15.0000 159.0000 20.7733 159.0000 27.1627 159.0000 31.0991 159.0000 33.8144 159.0000 40.2038 159.0000 43.5351 159.0000 49.3085 159.0000 53.3232 159.0000 59.7125 159.0000 15.0000 175.0000 24.4237 175.0000 30.8004 175.0000 36.5612 175.0000 39.2639 175.0000 45.0246 175.0000 48.3433 175.0000 52.3138 175.0000 56.2376 175.0000 62.6143 175.0000 15.0000 191.0000 24.1832 191.0000 30.3193 191.0000 36.4555 191.0000 41.9756 191.0000 45.1042 191.0000 51.2404 191.0000 57.3765 191.0000 63.5127 191.0000 67.1958 191.0000 15.0000 207.0000 18.1088 207.0000 21.8226 207.0000 27.9895 207.0000 37.2033 207.0000 40.4392 207.0000 43.5480 207.0000 49.7148 207.0000 55.8816 207.0000 59.1175 207.0000 15.0000 223.0000 17.4420 223.0000 22.9420 223.0000 26.0000 223.0000 32.1160 223.0000 34.5580 223.0000 40.0580 223.0000 46.1740 223.0000 49.2320 223.0000 55.3480 223.0000 }; \addplot [only marks, mark=x] table { 14.6767 31.0000 22.1091 31.0000 27.9999 31.0000 34.4626 31.0000 37.6896 31.0000 43.5694 31.0000 46.5073 31.0000 52.8042 31.0000 55.0209 31.0000 57.2791 31.0000 15.7127 47.0000 19.9584 47.0000 24.2615 47.0000 27.2827 47.0000 30.2351 47.0000 35.7595 47.0000 42.4526 47.0000 48.7635 47.0000 52.2720 47.0000 54.6883 47.0000 14.9651 63.0000 18.0680 63.0000 24.5755 63.0000 30.6801 63.0000 34.3453 63.0000 39.8446 63.0000 42.5355 63.0000 48.9502 63.0000 51.5555 63.0000 57.6602 63.0000 15.0628 79.0000 21.1392 79.0000 26.6532 79.0000 34.8531 79.0000 37.5288 79.0000 44.5353 79.0000 49.7517 79.0000 56.8666 79.0000 64.3613 79.0000 67.1513 79.0000 14.9862 95.0000 18.2050 95.0000 20.6562 95.0000 26.8400 95.0000 32.9738 95.0000 39.1301 95.0000 42.9676 95.0000 46.0590 95.0000 49.2853 95.0000 55.2519 95.0000 15.1479 111.0000 20.6610 111.0000 23.3781 111.0000 27.3724 111.0000 29.8365 111.0000 35.8401 111.0000 41.9648 111.0000 47.7243 111.0000 50.6916 111.0000 54.3722 111.0000 13.9524 127.0000 18.3860 127.0000 24.7672 127.0000 28.1029 127.0000 30.7891 127.0000 33.0991 127.0000 38.4939 127.0000 44.8960 127.0000 50.6696 127.0000 57.0089 127.0000 14.7662 143.0000 20.8421 143.0000 27.9391 143.0000 31.8974 143.0000 33.7931 143.0000 40.1888 143.0000 43.0590 143.0000 48.8543 143.0000 54.1382 143.0000 59.4429 143.0000 14.7035 159.0000 20.1169 159.0000 26.5063 159.0000 30.2732 159.0000 34.7037 159.0000 40.2885 159.0000 43.8527 159.0000 49.2238 159.0000 52.2856 159.0000 58.6538 159.0000 14.7160 175.0000 24.4592 175.0000 31.1200 175.0000 36.7316 175.0000 39.3420 175.0000 44.9252 175.0000 48.1232 175.0000 52.0937 175.0000 55.9606 175.0000 62.9125 175.0000 14.2642 191.0000 24.5891 191.0000 30.1163 191.0000 37.3181 191.0000 42.1279 191.0000 44.1908 191.0000 50.2255 191.0000 57.5034 191.0000 64.6544 191.0000 67.8048 191.0000 15.3914 207.0000 17.7648 207.0000 21.7159 207.0000 28.3572 207.0000 37.8351 207.0000 39.9694 207.0000 43.8072 207.0000 49.5852 207.0000 56.4324 207.0000 59.2147 207.0000 14.8007 223.0000 17.2427 223.0000 23.2243 223.0000 26.5480 223.0000 31.6344 223.0000 34.4085 223.0000 40.5728 223.0000 46.5054 223.0000 48.9856 223.0000 55.4840 223.0000 }; \legend{$Original$,$Modified$}; \end{groupplot} \end{tikzpicture}\\ $\\$ {\footnotesize {\bf Fig. 9} Distortion plots-- For L=39, the distortion is computed using some of the characters using $\Delta=0.1$, $\Delta=0.5$, $\Delta=1$, $\Delta=1.5$, $\Delta=2$, $\Delta=2.5$, $\Delta=3$, $\Delta=5$ and $\Delta=10$. The $x$ marks are exactly centered into the $o$ marks when the distortion is very low. } \end{figure*} All the transparency experiments shown in Table 1, Figure 8 and 9 prove that the higher the value of $\Delta$ is, the more the transparency decreases. Based on these experiments, we assume that for a distortion $D_s$ greater than 0.01335, any perceptual difference between the original and the watermarked document can be noticed. Thus the transparency threshold level $a$ is equal to 0.01335. The distortion values that are selected to show good transparency are shown in bold in Table 1. \subsection{Tests of Robustness}\label{s:robustness evaluations} \noindent Experiments are done on the Violin PDF document shown in the top-left hand side of Figure 8 and the embedded message "UFC" using $L$=39. Two different watermarking attacks: Gaussian and Salt\&Pepper noises are applied to the x-coordinates of the characters in the watermarked document. Only the digits after the decimal point are modified. After the attacks, the extracted message is compared to the original message by computing the Pearson's linear correlation coefficient (corr), the Mean Square Error (MSE) and the Bit Error Rate (BER). The simulations were repeated 500 times. Table 2 and 3 illustrate an average of all the robustness results (corr, MSE and BER), and from their values, we notice that the higher the value of $\Delta$ is, the more the robustness increases. Since two noises attacks (Gaussian and Salt\&Pepper) under two densities (0.1 and 0.25) are applied, therefore we will get four different robustness threshold levels: $b_1$, $b_2$, $b_3$ and $b_4$. $b_1$ and $b_3$ are computed respectively from the experiments of Gaussian and Salt\&Pepper noises under a density equal to 0.1, while $b_2$ and $b_4$ under a density equal to 0.25. The robustness threshold level $b$ is therefore computed. It corresponds to the best robustness under all the watermarking attacks. In our experiments, we consider that BER = 12.5\% can be tolerated to deduce the values of $b_1$, $b_2$, $b_3$ and $b_4$. This is motivated by the fact that this percentage of BER which corresponds in our experiments to a total of 4 error bits from $k$ = 24, can be corrected by the majority of error correcting codes. Each robustness threshold level of each noise attack under each density value is thus equal to the distortion $D_s$ from which all the error bits (inferior than or equal to 4) can be corrected. \begin{center} {\footnotesize {\bf Table 2} Tests of robustness under gaussian attack} \end{center} \begin{center} \resizebox{8.6cm}{!}{ \begin{tabular}{ | l | l | l | l | l |} \hline ~~~~~~~~DELTA & Density & ~~corr & ~MSE & ~BER\\ \hline 0.1 ($D_s$ = 0.00002) & 0.1 & -0.0714 & 0.5233 & 12.5600\\ \cline{2-5} & 0.25 & -0.0545 & 0.5162 & 12.3900\\ \hline 0.5 ($D_s$ = 0.00053) & 0.1 & -0.0503 & 0.5161 & 12.3860\\ \cline{2-5} & 0.25 & -0.0508 & 0.5242 & 12.5800\\ \hline 1 ($D_s$ = 0.00214) & 0.1 & 0.2713 & 0.3528 & 8.4680\\ \cline{2-5} & 0.25 & 0.0503 & 0.4638 & 11.1320 \\ \hline 1.1 ($D_s$ = 0.00258) & 0.1 & 0.3587 & 0.3081 & 7.3940\\ \cline{2-5} & 0.25 & 0.1204 & 0.4281 & 10.2740\\ \hline 1.2 ($D_s$ = 0.00308) & 0.1 & 0.4222 & 0.2709 & 6.5020\\ \cline{2-5} & 0.25 & 0.1525 & 0.4105 & 9.8520\\ \hline 1.3 ($D_s$ = 0.00361) & 0.1 & 0.4834 & 0.2415 & 5.7960\\ \cline{2-5} & 0.25 & 0.2187 & 0.3661 & 8.7860\\ \hline 1.4 ($D_s$ = 0.00418) & 0.1 & 0.5555 & 0.2066 & 4.9580\\ \cline{2-5} & 0.25 & 0.2836 & 0.3498 & 8.3960\\ \hline 1.5 ($D_s$ = 0.00481) & 0.1 & 0.6271 & 0.1716 & 4.1180 \\ \cline{2-5} & 0.25 & 0.3596 & 0.3062 & 7.3480 \\ \hline \bf 1.6 ($\bf D_s$ = 0.00547) & \bf 0.1 & \bf 0.6510 & \bf 0.1587 & \bf 3.8080\\ \cline{2-5} & 0.25 & 0.3779 & 0.2953 & 7.0880\\ \hline 1.7 ($D_s$ = 0.00617) & 0.1 & 0.7019 & 0.1358 & 3.2580\\ \cline{2-5} & 0.25 & 0.4577 & 0.2539 & 6.0940\\ \hline 1.8 ($D_s$ = 0.00692) & 0.1 & 0.7381 & 0.1180 & 2.8320\\ \cline{2-5} & 0.25 & 0.5400 & 0.2133 & 5.1200\\ \hline 1.9 ($D_s$ = 0.00770) & 0.1 & 0.7701 & 0.1042 & 2.5000\\ \cline{2-5} & 0.25 & 0.5593 & 0.2036 & 4.8860\\ \hline 2 ($D_s$ = 0.00855) & 0.1 & 0.7956 & 0.0921 & 2.2100 \\ \cline{2-5} & 0.25 & 0.5881 & 0.1914 & 4.5940 \\ \hline 2.1 ($D_s$ = 0.00942) & 0.1 & 0.8113 & 0.0851 & 2.0420\\ \cline{2-5} & 0.25 & 0.6330 & 0.1672 & 4.0140\\ \hline \bf 2.2 ($\bf D_s$ = \bf 0.01034) & 0.1 & 0.8328 & 0.0755 & 1.8120\\ \cline{2-5} & \bf 0.25 & \bf 0.6688 & \bf 0.1503 & \bf 3.6060\\ \hline 2.3 ($D_s$ = 0.01130) & 0.1 & 0.8509 & 0.0670 & 1.6080\\ \cline{2-5} & 0.25 & 0.6917 & 0.1397 & 3.3520\\ \hline 2.4 ($D_s$ = 0.01230) & 0.1 & 0.8698 & 0.0585 & 1.4040\\ \cline{2-5} & 0.25 & 0.7307 & 0.1221 & 2.9300\\ \hline 2.5 ($D_s$ = 0.01335) & 0.1 & 0.8715 & 0.0578 & 1.3860\\ \cline{2-5} & 0.25 & 0.7589 & 0.1089 & 2.6140\\ \hline 3 ($D_s$ = 0.01923) & 0.1 & 0.8972 & 0.0463 & 1.1100\\ \cline{2-5} & 0.25 & 0.8425 & 0.0708 & 1.7000\\ \hline 5 ($D_s$ = 0.05342) & 0.1 & 0.9075 & 0.0417 & 1\\ \cline{2-5} & 0.25 & 0.9062 & 0.0423 & 1.0140\\ \hline 10 ($D_s$ = 0.21367) & 0.1 & 0.9075 & 0.0417 & 1\\ \cline{2-5} & 0.25 & 0.9075 & 0.0417 & 1\\ \hline \end{tabular} } \end{center} Table 2 and 3 present respectively the tests of robustness under Gaussian and Salt\&Pepper noises attacks with two density values: 0.1 and 0.25. For a density equal to 0.1, we notice from Table 1 that for $D_s \geq$ 0.00547, the average BER is less than or equal to 3.8080, while 3.3620 for $D_s \geq$ 0.00308 from Table 2. Therefore $b_1$ and $b_2$ are equal to 0.00547 and 0.00308, respectively. For a density equal to 0.25, Table 1 shows that the average BER that can be entirely corrected is less than or equal to 3.6060 for the interval of $D_s$ $\geq$ 0.01034, while 3.6200 for the interval of $D_s$ $\geq$ 0.00692 from Table 2. Therefore $b_3$ and $b_4$ are equal to 0.01034 and 0.00692, respectively. The four threshold levels are shown in bold in Table 2 and 3. \begin{center} {\footnotesize {\bf Table 3} Tests of robustness under Salt\&Pepper attack} \end{center} \begin{center} \resizebox{8.6cm}{!}{ \begin{tabular}{ | l | l | l | l | l |} \hline ~~~~~~~~DELTA & Density & ~~corr & ~MSE & ~BER\\ \hline 0.1 ($D_s$ = 0.00002) & 0.1 & -0.0502 & 0.5113 & 12.2720\\ \cline{2-5} & 0.25 & -0.0634 & 0.5208 & 12.4980\\ \hline 0.5 ($D_s$ = 0.00053) & 0.1 & 0.0915 & 0.4400 & 10.5600\\ \cline{2-5} & 0.25 & -0.0510 & 0.5143 & 12.3420\\ \hline 1 ($D_s$ = 0.00214) & 0.1 & 0.5701 & 0.1976 & 4.7420\\ \cline{2-5} & 0.25 & 0.1810 & 0.3889 & 9.3340 \\ \hline 1.1 ($D_s$ = 0.00258) & 0.1 & 0.6305 & 0.1691 & 4.0580\\ \cline{2-5} & 0.25 & 0.2580 & 0.3649 & 8.7580\\ \hline \bf 1.2 ($\bf D_s$ = \bf 0.00308) & \bf 0.1 & \bf 0.6914 & \bf 0.1401 & \bf 3.3620\\ \cline{2-5} & 0.25 & 0.3268 & 0.3212 & 7.7080\\ \hline 1.3 ($D_s$ = 0.00361) & 0.1 & 0.7401 & 0.1178 & 2.8260\\ \cline{2-5} & 0.25 & 0.4042 & 0.2816 & 6.7580\\ \hline 1.4 ($D_s$ = 0.00418) & 0.1 & 0.7796 & 0.0996 & 2.3900\\ \cline{2-5} & 0.25 & 0.4715 & 0.2469 & 5.9260\\ \hline 1.5 ($D_s$ = 0.00481) & 0.1 & 0.8034 & 0.0884 & 2.1220 \\ \cline{2-5} & 0.25 & 0.5065 & 0.2263 & 5.4320 \\ \hline 1.6 ($D_s$ = 0.00547) & 0.1 & 0.8216 & 0.0802 & 1.9260\\ \cline{2-5} & 0.25 & 0.5716 & 0.1969 & 4.7260\\ \hline 1.7 ($D_s$ = 0.00617) & 0.1 & 0.8467 & 0.0689 & 1.6540\\ \cline{2-5} & 0.25 & 0.6088 & 0.1793 & 4.3020\\ \hline \bf 1.8 ($\bf D_s$ = \bf 0.00692) & 0.1 & 0.8657 & 0.0603 & 1.4460\\ \cline{2-5} & \bf 0.25 & \bf 0.6682 & \bf 0.1508 & \bf 3.6200\\ \hline 1.9 ($D_s$ = 0.00770) & 0.1 & 0.8730 & 0.0570 & 1.3680\\ \cline{2-5} & 0.25 & 0.7114 & 0.1307 & 3.1380\\ \hline 2 ($D_s$ = 0.00855) & 0.1 & 0.8759 & 0.0558 & 1.3400 \\ \cline{2-5} & 0.25 & 0.7242 & 0.1247 & 2.9920 \\ \hline 2.1 ($D_s$ = 0.00942) & 0.1 & 0.8845 & 0.0519 & 1.2460\\ \cline{2-5} & 0.25 & 0.7621 & 0.1074 & 2.5780\\ \hline 2.2 ($D_s$ = 0.01034) & 0.1 & 0.8942 & 0.0476 & 1.1420\\ \cline{2-5} & 0.25 & 0.7746 & 0.1014 & 2.4340\\ \hline 2.3 ($D_s$ = 0.01130) & 0.1 & 0.8989 & 0.0455 & 1.0920\\ \cline{2-5} & 0.25 & 0.8030 & 0.0885 & 2.1240\\ \hline 2.4 ($D_s$ = 0.01230) & 0.1 & 0.9019 & 0.0442 & 1.0600\\ \cline{2-5} & 0.25 & 0.8261 & 0.0782 & 1.8760\\ \hline 2.5 ($D_s$ = 0.01335) & 0.1 & 0.9032 & 0.0436 & 1.0460\\ \cline{2-5} & 0.25 & 0.8388 & 0.0724 & 1.7386\\ \hline 3 ($D_s$ = 0.01923) & 0.1 & 0.9066 & 0.0421 & 1.0100\\ \cline{2-5} & 0.25 & 0.8804 & 0.0537 & 1.2880\\ \hline 5 ($D_s$ = 0.05342) & 0.1 & 0.9075 & 0.0417 & 1\\ \cline{2-5} & 0.25 & 0.9075 & 0.0417 & 1\\ \hline 10 ($D_s$ = 0.21367) & 0.1 & 0.9075 & 0.0417 & 1\\ \cline{2-5} & 0.25 & 0.9075 & 0.0417 & 1\\ \hline \end{tabular} } \end{center} $\\$ Figure 10 and 11 present the results of the BER and correlation (shown in Table 2 and 3) by function of $\Delta$, respectively. The figures serve to compare between the Gaussian and Salt$\&$Pepper noises attacks under the two density values: 0.1 and 0.25. They exhibit 4 different curves. The red (dashed) and blue (dashdotted) curves represent the Gaussian noise under the two densities 0.1 and 0.25, respectively. The green (dotted) and black (dash pattern) curves represent the Salt$\&$Pepper noise under the two densities 0.1 and 0.25, respectively. The plotted curves prove that the Salt$\&$Pepper attack is always more robust than the Gaussian attack even under the two density values. $\\$ $\\$ \begin{center} \begin{tikzpicture} \begin{axis}[% axis x line=bottom, axis y line=left, xlabel=$\Delta$, ylabel=$BER~(\%)$, width=0.66\textwidth, legend pos=north east] \addplot[mark=none, dashed, red,thick] coordinates {(0.1, 13.8742) (0.5, 12.8721) (1, 8.4680) (1.1, 7.3940) (1.2, 6.5020) (1.3, 5.7960) (1.4, 4.9580) (1.5, 4.1180) (1.6, 3.8080) (1.7, 3.2580) (1.8, 2.8320) (1.9, 2.5000) (2, 2.2100) (2.1, 2.0420) (2.2, 1.8120) (2.3, 1.6080) (2.4, 1.4040) (2.5, 1.3860) (3, 1.1100) (5, 1) (10, 1)}; \addplot[mark=none, dotted, green,thick] coordinates {(0.1, 10.3501) (0.5, 7.1) (1, 4.7420) (1.1, 4.0580) (1.2, 3.3620) (1.3, 2.8260) (1.4, 2.3900) (1.5, 2.1220) (1.6, 1.9260) (1.7, 1.6540) (1.8, 1.4460) (1.9, 1.3680) (2, 1.3400) (2.1, 1.2460) (2.2, 1.1420) (2.3, 1.0920) (2.4, 1.0600) (2.5, 1.0460) (3, 1.0100) (5, 1) (10, 1)}; \addplot[mark=none, dashdotted, blue,thick] coordinates {(0.1, 15.3222) (0.5, 13) (1, 11.1560) (1.1, 10.2920) (1.2, 9.8520) (1.3, 8.7860) (1.4, 8.3960) (1.5, 7.3480) (1.6, 7.0880) (1.7, 6.0940) (1.8, 5.2100) (1.9, 4.8860) (2, 4.5940) (2.1, 4.0140) (2.2, 3.6060) (2.3, 3.3520) (2.4, 2.9300) (2.5, 2.6140) (3, 1.7000) (5, 1.0140) (10, 1)}; \addplot[mark=none, dash pattern=on 10pt off 2pt on 5pt off 6pt, black,thick] coordinates {(0.1, 13) (0.5, 10.7) (1, 9.3340) (1.1, 8.7580) (1.2, 7.7080) (1.3, 6.7580) (1.4, 5.9260) (1.5, 5.4320) (1.6, 4.7260) (1.7, 4.3020) (1.8, 3.6200) (1.9, 3.1380) (2, 2.9920) (2.1, 2.5780) (2.2, 2.4340) (2.3, 2.1240) (2.4, 1.8760) (2.5, 1.7386) (3, 1.2880) (5, 1) (10, 1)}; \legend{$Gaussian (0.1)$,$Salt\&pepper (0.1)$,$Gaussian (0.25)$,$Salt\&pepper (0.25)$}; \end{axis} \end{tikzpicture} \\ {\footnotesize {\bf Fig. 10} Gaussian and Salt$\&$Pepper comparisons in terms of BER} \end{center} $\\$ \begin{center} \begin{tikzpicture} \begin{axis}[% axis x line=bottom, axis y line=left, xlabel=$\Delta$, ylabel=$Correlation~(\%)$, width=0.66\textwidth, legend pos=south east] \addplot[mark=none, dashed, red,thick] coordinates {(0.1, -7.14) (0.5, -5.03) (1, 27.13) (1.5, 62.71) (2, 79.56) (2.5, 87.15) (3, 89.72) (5, 90.75) (10, 90.75)}; \addplot[mark=none, dotted, green,thick] coordinates {(0.1, -5.02) (0.5, 9.15) (1, 57.01) (1.5, 80.34) (2, 87.59) (2.5, 90.32) (3, 90.66) (5, 90.75) (10, 90.75)}; \addplot[mark=none, dashdotted, blue,thick] coordinates {(0.1, -5.45) (0.5, -5.08) (1, 0.0503) (1.5, 35.96) (2, 58.81) (2.5, 75.89) (3, 84.25) (5, 90.62) (10, 90.75)}; \addplot[mark=none, dash pattern=on 10pt off 2pt on 5pt off 6pt, black,thick] coordinates {(0.1, -6.34) (0.5, -5.10) (1, 18.10) (1.5, 50.65) (2, 72.42) (2.5, 83.88) (3, 88.04) (5, 90.75) (10, 90.75)}; \legend{$Gaussian (0.1)$,$Salt\&pepper (0.1)$,$Gaussian (0.25)$,$Salt\&pepper (0.25)$}; \end{axis} \end{tikzpicture} \\ {\footnotesize {\bf Fig. 11} Gaussian and Salt$\&$pepper comparisons in terms of correlation} \end{center} \subsection{Robustness with Transparency}\label{s:rob vs trans} %In the proposed method, some distortions are considered acceptable whereas others are not. But the remaining question to be resolved is "What makes a distortion acceptable?". In order to do so, we built the two independent experiments (transpareny and %robustness) performed in the previous sections and according to their computations, the interval or (the unique value) of the acceptable distortion can be expected. Before to start by analysing the above experiments and make a best expectation of the %acceptable distortion, let us explain before a brief general answer of the remaining question. %Generally, in the proposed method, a roughly negligible distortion seeks to construct a non-robust embedding method, while good robustness with a notable distortion to the human perception (aka "Human Visual System" abbreviated as HVS). In this paper, we %characterize the distortion's acceptibility as the possibility to have good robustness ($\geq$ 70\%) with good transparency. In other words, what is the value of $\Delta$ for which the method shows good transparency and good robustness?. If we consider %for example the interval [a, b[ of distortion $D_s$ in which the values are acceptable:\\ %1) If $D_s$ < a, good transparency - bad robustness.\\ %2) If $D_s$ $\geq$ b, bad transparency - good robustness.\\ %3) If $D_s$ $\in$ [a, b[, good transparency - good robustness.\\ %Let us start now analysing the relationship between the transparency and robustness evalutations performed previously. According to the transparency experiments shown in Table 1, Figure 7 and 8, we expects that the method shows good transparency for %$\Delta$ < 2.5. Hence, the acceptable distortion can only be found in this interval ([0~ 2.5[). But according to the definition of the distortion acceptibility, how can we narrow this interval in order to show good transparency with good robustness?\\ We have found 0.00547 $\leq$ $D_s \leq$ 0.01335 for 1.6 $\leq$ $\Delta \leq$2.5 and 0.00308 $\leq$ $D_s \leq$ 0.01335 for 1.2 $\leq$ $\Delta \leq$2.5 under Gaussian and Salt$\&$Pepper attacks with density = 0.1, respectively. While 0.01034 $\leq$ $D_s \leq$ 0.01335 for 2.2 $\leq$ $\Delta \leq$2.5 and 0.00692 $\leq$ $D_s \leq$ 0.01335 for 1.8 $\leq$ $\Delta \leq$2.5 under Gaussian and Salt$\&$Pepper attacks with density = 0.25, respectively. \\ The final acceptable distortion interval that can show sufficient rorbustness and transparency under all the watermarking attacks at the same time is the distortion $D_s$ that belongs to the interval [0.01034~0.08] and it is represented with the blue curve in Figure 12. The red (dashed), green (dotted), black (dash pattern) and blue (dashdotted) curves refer to the Gaussian (density =0.1), Salt\&Pepper (density=0.1), Salt\&Pepper (density=0.25) and Gaussian (density = 0.25), respectively. \begin{center} \begin{tikzpicture} \begin{axis}[% axis x line=bottom, axis y line=left, xlabel=$Distortion ~D_s$, ylabel=$Correlation~(\%)$, width=0.66\textwidth, %only marks, legend pos=north east] \addplot[mark=none, dashed, red,thick] coordinates {(0.00547, 0.6510) (0.00617, 0.7019) (0.00692, 0.7381) (0.00770, 0.7701) (0.00855, 0.7956) (0.00942, 0.8113) (0.01034, 0.8328) (0.01130, 0.8509) (0.01230, 0.8698) (0.01335, 0.8715)}; \addplot[mark=none, dotted, green,thick] coordinates {(0.00308, 0.6914) (0.00361, 0.7401) (0.00418, 0.7796) (0.00481, 0.8034) (0.00547, 0.8216) (0.00617, 0.8467) (0.00692, 0.8657) (0.00770, 0.8730) (0.00855, 0.8759) (0.00942, 0.8845) (0.01034, 0.8942) (0.01130, 0.8989) (0.01230, 0.9019) (0.01335, 0.9032)}; \addplot[mark=none, dashdotted, blue,thick] coordinates {(0.01034, 0.6688) (0.01130, 0.6917) (0.01230, 0.7307) (0.01335, 0.7589)}; \addplot[mark=none, dash pattern=on 10pt off 2pt on 5pt off 6pt, black,thick] coordinates {(0.00692, 0.6682) (0.00770, 0.7114) (0.00855, 0.7242) (0.00942, 0.7621) (0.01034, 0.7746) (0.01130, 0.8030) (0.01230, 0.8261) (0.01335, 0.8388)}; \end{axis} \end{tikzpicture} \end{center} {\footnotesize {\bf Fig. 12} Robustness correlations of all possible acceptable distortion under all the watermarking attacks} \subsection{Our method Vs Related work}\label{s:related work} Our method has shown an new watermarking scheme to embed the secret message under a sufficient Transparency-Robustness tradeoff. In contrast to what has been proposed in $[4]$ and $[7]$, our method presents better transparency and higher embedding capacity. For example in $[7]$, the message was embedded by slightly modifying the decimal values of the media box and text matrices, which means that the increase in the number of characters in the document does not affect the embedding capacity of the method. That is why, we exploited the characters for the embedding. More specifically, we exploited the x-coordinates of the characaters for the embedding and we used each group of them to embed one bit message by taking advantage of the STDM concept. In this case our method shows sufficient transparency and sufficient robustness at the same time where the embedded message becomes hard to be removed in contrast to what is deduced in $[5]$. It also provides an efficient solution of $[3]$ and $[6]$ by making the detectability of the message more difficult. The y-coordinates values were not used because they are constant for the characters of the same line, which can increase the detectability. \section{Conclusion and Future work}\label{s:conclusion} In this work, we have shown in details the four different components of a PDF file structure: Header, Body, Cross-Reference Table and Trailer. The structure has been exploited to be used for an efficient blind digital watermarking scheme in terms of Transparency-Robustness tradeoff. The proposed scheme was based on a variant of the Quantization Index Modulation (QIM) method called Spread Transform Dither Modulation (STDM). Since the x-coordinates values of the characters presented in the document are non-constant especially those belonging on the same line, they have been exploited to embed each bit of the secret message. The main contribution of this work was to achieve sufficient resistance against very high density noises attacks while preserving sufficient transparency at the same time. One of the biggest difficulties was to perform multiple transparency and robustness evaluations in order to estimate the strong value of distortion that would lead a sufficient robustness with sufficient transparency. That is why this work relies on two distinct threshold levels $a$ and $b$ which are computed by exploiting the transparency and robustness experiments, respectively. The strong distortion value $D_s$ that would lead to a sufficient robustness with sufficient transparency should be neither greater than $a$ nor inferior to $b$. The value satisfying this condition is called "The acceptable distortion". As for future enhancements, we plan to extend this work into both practical and theoretical directions. In the practical part, we plan to find how robust is the approach against the JPEG compression. This hard task is challenging and presents direct applications into newspaper watermarking for instance. In the theoretical part, we plan to study how secure the STDM based approach is, \textit{i.e.}, how many bit are sufficient to find the encoding key as in a classical cryptographic approach. %% The Appendices part is started with the command \appendix; %% appendix sections are then done as normal sections %% \appendix %% \section{} %% \label{} %% If you have bibdatabase file and want bibtex to generate the %% bibitems, please use %% %% else use the following coding to input the bibitems directly in the %% TeX file. %% \bibitem{label} %% Text of bibliographic item \begin{thebibliography}{1} % Bibliography - this is intentionally simple in this template \bibitem{notes} I. Cox, M. Miller, J. Bloom, J. Fridrich and T. Kalker. {\em Digital Watermarking and Steganography.} second edition, 624p, November 27, 2007. \bibitem{notes} Document management-Portable Document Format-Part1: PDF1.7. \url{http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf}, 2008. \bibitem{notes} L. Y. POR and B. Delina, "Information Hiding: A New Approach in Text Steganography", {\em 7th WSEAS Int. Conf. on APPLIED COMPUTER $\&$ APPLIED COMPUTATIONAL SCIENCE} (ACACOS'08), 7p, April 6-8, 2008. \bibitem{notes} F. Alizadeh, N. Canceill, S. Dabkiewicz and D. Vandevenne, "Using Steganography to hide messages inside PDF files", 34p, pp.1-11, December 30, 2012. \bibitem{notes} H. F. Lin, L. W. Lu, C. Y. Gun and C. Y. Chen, "A Copyright Protection Scheme Based on PDF", {\em International Journal of Innovative Computing, Information and Control}, Vol. 9, No.1, ISSN 1349-4198, pp.1-6, January 2013. \bibitem{notes} I.S. Lee and W. H. Tsai , "a new approach to covert communication via pdf files", {\em In Signal processing}, 557-565, 2010. \bibitem{notes} C. T. Wang and W. H. Tsai , "Data Hiding in PDF Files and Applications by imperceivable modifications of PDF Object Parameters", {\em Proceedings of 2008 Conference on Computer Vision, Graphics and Image Processing}, Ilan, Taiwan, Republic of China, 8p, pp.1-6, 2008. \bibitem{notes} B. Chen and G. W. Wornell, "Quantization Index Modulation Methods for Digital Watermarking and Information Embedding of Multimedia", {\em Journal of VLSI Signal Processing 27}, 7-33, 2001. \bibitem{notes} R. Darazi, R. H., Beno\^it Macq, "Applying Spread Transform Dither Modulation for 3D-MESH Watermarking by using Perceptual Models", {\em In proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing} (ICASSP), No. 1742-1745, pp.1742-1745, 2010. \bibitem{notes} W. Wan, J. Liu, J. Sun, X. Yang, X. Nie, F. Wang, "Logarithmic Spread-Transform Dither Modulation Watermarking Based On Perceptual Model", {\em In proceeding of 20th IEEE International Conference on Image Processing} (ICIP'2013), pp. 4522-4526, 15-18 September 2013. \bibitem{notes} B. Chen and G. W. Wornell, "Provably robust digital watermarking", {\em In proceeding of the International Society for Optics and Photonics} (SPIE'99), pp. 43-54, vol. 3845, 1999. \end{thebibliography} $\\$ $\\$ \includegraphics[scale=0.9]{ahmad.png} Ahmad W. BITAR was born in 1990. In 2013, he received the M.S degree in telecommunication engineering at Universit\'e Antonine (UA), Hadat-Baabda, Lebanon. From March 2013 to September 2013, he did a research internship entitled ''Robust watermarking in PDF documents'' at Universit\'e Antonine, and collaborated with the University of Franche-Comt\'e (UFC). $\\$ $\\$ \includegraphics[scale=0.15]{rony.png} Rony DARAZI is actually an associate professor at Universit\'e Antonine (UA). He received the M.S degree in computer science and telecommunication engineering in 2005, and the Ph.D. degree from the Universit\'e catholique de Louvain (UCL), Belgium. He was a researcher in the ICTEAM institute at UCL since 2006, and a member of the TICKET lab at UA since 2010. His research interests include information security and digital watermarking, digital 2D and 3D image processing. In 2009, he was granted the best paper award, 2nd price by the Digital Watermarking Alliance (DWA) and the IS\&T/SPIE International Conference on Media Forensics and Security XII. Rony Darazi is an IEEE member; He has been actively involved as a reviewer in Signal, Image and Video Processing Journal by Springer, IEEE Transactions on Information Forensics \& Security and International Conference on Image Processing (ICIP). $\\$ $\\$ \includegraphics[scale=0.9]{jean-francois.png} Jean-Fran\c{c}ois COUCHOT is an Associate Professor in the Department of Computer Science (DISC) of the FEMTO-ST institute (UMR 6174 CNRS) at the university of Franche-Comt\'e. He received a Ph.D. in Computer Science in 2006 in the FEMTO-ST institute. He has applied for a postdoctoral position at INRIA Saclay Ile de France in 2006. His research focuses on discrete dynamic systems (with applications into data hiding, pseudorandom number generators, hash function) and on bioinformatics, especially in gene evolution prediction. He has written more than 25 scientific articles in these areas. $\\$ $\\$ \includegraphics[scale=0.9]{raphael.png} Rapha\"{e}l COUTURIER received the Ph.D. degree in 2000 in Computer science from the Henri Poincare University in Nancy, France. From 2000 to 2006 he was an assistant professor at the University of Franche-Comt\'e. Then he has been a professor at the same university. His research interests include parallel and distributed algorithms with a strong knowledge on asynchronous iterative methods, GPU and FPGA computing, sensor networks and watermarking. Rapha\"{e}l authored or co-authored more than 80 papers in conferences and journals and two books. He has also served in many program committees for conferences. \end{document} \endinput %% %% End of file `elsarticle-template-num.tex'.