+On considère ici une fonction construite comme à la section précédente.
+On s'intéresse ici à étudier de manière théorique les
+itérations définies à l'équation~(\ref{eq:asyn}) pour une
+stratégie donnée.
+Tout d'abord, celles-ci peuvent être interprétées comme une marche le long d'un
+graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la
+stratégie.
+On remarque que ce graphe d'itération est toujours un sous graphe
+du ${\mathsf{N}}$-cube augmenté des
+boucles sur chaque sommet, \textit{i.e.}, les arcs
+$(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$.
+Ainsi, le travail ci dessous répond à la question de
+définir la longueur du chemin minimum dans ce graphe pour
+obtenir une distribution uniforme.
+Ceci se base sur la théorie des chaînes de Markov.
+Pour une référence
+générale à ce sujet on pourra se référer
+au livre~\cite{LevinPeresWilmer2006},
+particulièrement au chapitre sur les temps d'arrêt.
+
+
+
+
+\begin{xpl}
+On considère par exemple le graphe $\textsc{giu}(f)$ donné à la
+\textsc{Figure~\ref{fig:iteration:f*}.} et la fonction de
+probabilités $p$ définie sur l'ensemble des arcs comme suit:
+$$
+p(e) \left\{
+\begin{array}{ll}
+= \frac{2}{3} \textrm{ si $e=(v,v)$ avec $v \in \Bool^3$,}\\
+= \frac{1}{6} \textrm{ sinon.}
+\end{array}
+\right.
+$$
+La matrice $P$ de la chaîne de Markov associée à $f^*$
+est
+\[
+P=\dfrac{1}{6} \left(
+\begin{array}{llllllll}
+4&1&1&0&0&0&0&0 \\
+1&4&0&0&0&1&0&0 \\
+0&0&4&1&0&0&1&0 \\
+0&1&1&4&0&0&0&0 \\
+1&0&0&0&4&0&1&0 \\
+0&0&0&0&1&4&0&1 \\
+0&0&0&0&1&0&4&1 \\
+0&0&0&1&0&1&0&4
+\end{array}
+\right)
+\]
+\end{xpl}
+
+
+
+
+Tout d'abord, soit $\pi$ et $\mu$ deux distributions sur
+$\Bool^{\mathsf{N}}$.
+La distance de \og totale variation\fg{} entre $\pi$ et $\mu$
+est notée $\tv{\pi-\mu}$ et est définie par
+$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$
+On sait que
+$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$
+De plus, si
+$\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a
+$$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
+
+Soit $P$ une matrice d'une chaîne de Markov sur $\Bool^{\mathsf{N}}$.
+$P(X,\cdot)$ est la distribution induite par la $X^{\textrm{ème}}$ colonne
+de $P$.
+Si la chaîne de Markov induite par
+$P$ a une distribution stationnaire $\pi$, on définit alors
+$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}$$
+
+et
+
+$$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
+
+Un résultat classique est
+
+$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
+
+
+
+
+Soit $(X_t)_{t\in \mathbb{N}}$ une suite de variables aléatoires de
+$\Bool^{\mathsf{N}}$.
+une variable aléatoire $\tau$ dans $\mathbb{N}$ est un
+\emph{temps d'arrêt} pour la suite
+$(X_i)$ si pour chaque $t$ il existe $B_t\subseteq
+(\Bool^{\mathsf{N}})^{t+1}$ tel que
+$\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$.
+En d'autres termes, l'événement $\{\tau = t \}$ dépend uniquement des valeurs
+de
+$(X_0,X_1,\ldots,X_t)$, et non de celles de $X_k$ pour $k > t$.
+
+
+Soit $(X_t)_{t\in \mathbb{N}}$ une chaîne de Markov et
+$f(X_{t-1},Z_t)$ une représentation fonctionnelle de celle-ci.
+Un \emph{temps d'arrêt aléatoire} pour la chaîne de
+Markov est un temps d'arrêt pour
+$(Z_t)_{t\in\mathbb{N}}$.
+Si la chaîne de Markov est irréductible et a $\pi$
+comme distribution stationnaire, alors un
+\emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
+(qui peut dépendre de la configuration initiale $X$),
+tel que la distribution de $X_\tau$ est $\pi$:
+$$\P_X(X_\tau=Y)=\pi(Y).$$
+
+
+Un temps d'arrêt $\tau$ est qualifié de \emph{fort} si $X_{\tau}$
+est indépendant de $\tau$. On a les deux théorèmes suivants, dont les
+démonstrations sont données en annexes~\ref{anx:generateur}.
+
+
+\begin{theorem}
+Si $\tau$ est un temps d'arrêt fort, alors $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
+\P_X(\tau > t)$.
+\end{theorem}
+
+\begin{theorem} \label{prop:stop}
+If $\ov{h}$ is bijective et telle que if for every $X\in \Bool^{\mathsf{N}}$,
+$\ov{h}(\ov{h}(X))\neq X$, alors
+$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$.
+\end{theorem}
+
+Sans entrer dans les détails de la preuve, on remarque que le calcul
+de cette borne ne tient pas en compte le fait qu'on préfère enlever des
+chemins hamiltoniens équilibrés.
+En intégrant cette contrainte, la borne supérieure pourrait être réduite.