]> AND Private Git Repository - hdrcouchot.git/blobdiff - 15TSI.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
oxford début
[hdrcouchot.git] / 15TSI.tex
index 76e0203ebf681fa2c274c0ceaf26a6fd60e24aa1..f2fe17b230376ff32b1fe05010c4da5e8e71c5be 100644 (file)
--- a/15TSI.tex
+++ b/15TSI.tex
@@ -8,7 +8,7 @@ On reprend ici le même plan que dans la section précédente.
 Dans le schéma généralisé, à la  $t^{\textrm{ème}}$ itération, 
 c'est l'ensemble 
 des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui 
 Dans le schéma généralisé, à la  $t^{\textrm{ème}}$ itération, 
 c'est l'ensemble 
 des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui 
-sont  mis à jour (c.f. équation~(\ref{eq:schema:generalise})).
+sont  mis à jour (cf. équation~(\ref{eq:schema:generalise})).
 On redéfinit la fonction la fonction
   $F_{f_g}:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
   \rightarrow \Bool^{\mathsf{N}}$  par
 On redéfinit la fonction la fonction
   $F_{f_g}:  \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) 
   \rightarrow \Bool^{\mathsf{N}}$  par
@@ -42,7 +42,7 @@ configurations $x^t$ sont définies par la récurrence
   $X^0=(x^0,S)$ 
   
   
   $X^0=(x^0,S)$ 
   
   
-On onstruit cette fois-ci l'espace 
+On construit cette fois ci l'espace 
 $\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
 
 $\mathcal{X}_g = \Bool^{\mathsf{N}} \times
 \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$