-\item $\mathcal{T} = \left\{f : \mathds{B}^n \to
-\mathds{B}^n \big/ G_{f_u} \textrm{ est transitive} \right\}$,
-\item $\mathcal{R} = \left\{f : \mathds{B}^n \to
-\mathds{B}^n \big/ G_{f_u} \textrm{ est régulière} \right\}$,
-\item $\mathcal{C} = \left\{f : \mathds{B}^n \to
-\mathds{B}^n \big/ G_{f_u} \textrm{ est chaotique} \right\}$.
+\item $\mathcal{T} = \left\{f : \mathds{B}^{\mathsf{N}} \to
+\mathds{B}^{\mathsf{N}} \textrm{ t. q. } G_{f_u} \textrm{ est transitive} \right\}$,
+\item $\mathcal{R} = \left\{f : \mathds{B}^{\mathsf{N}} \to
+\mathds{B}^{\mathsf{N}} \textrm{ t. q. } G_{f_u} \textrm{ est régulière} \right\}$,
+\item $\mathcal{C} = \left\{f : \mathds{B}^{\mathsf{N}} \to
+\mathds{B}^{\mathsf{N}} \textrm{ t. q. } G_{f_u} \textrm{ est chaotique} \right\}$.