]> AND Private Git Repository - hdrcouchot.git/blobdiff - stegoyousra.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout d'intro et de conclusion
[hdrcouchot.git] / stegoyousra.tex
index cfda20f760659142c9830504a8c70bc69a52a88d..fdc3bf43149212fa70aa1cde673ce151d45191cc 100644 (file)
@@ -34,6 +34,7 @@ données et prouvées (Section~\ref{sec:second} et Section~\ref{sec:poly}).
 Une adaptation d'une fonction de distorsion existante est étudiée
 en Section~\ref{sec:distortion} et des expériences sont présentées 
 en Section~\ref{sec:experiments}.
+Ce chapitre a été publié dans~\cite{ccfg16:ip}.
 
 
 
@@ -494,7 +495,7 @@ P(i,0)
 
 
 \begin{table}[ht]
-\caption{ Noyaux pour les dérivéees secondes en $x$ et $y$ lors de l'interpolation polynomiale\label{table:sod:diag:poly}
+\caption{ Noyaux pour les dérivées secondes en $x$ et $y$ lors de l'interpolation polynomiale\label{table:sod:diag:poly}
 }
 \centering
 %\scriptsize
@@ -570,7 +571,7 @@ de cette dernière:
 \]
 
 
-\section{Experimentations}\label{sec:experiments}
+\section{Expérimentations}\label{sec:experiments}
 
 Tout d'abord, l'ensemble du code est accessible en ligne\footnote{\url{https://github.com/stego-content/SOS}}.
 La Figure~\ref{fig:oneimage} représente les résultats d'embarquement de données dans 
@@ -611,7 +612,7 @@ concentrent les changements.
 Les deux méthodes présentées ici dépendent de noyaux dont la taille va jusqu'à  
 $(2N+1)\times(2N+1)$. Cette section montre comment évaluer $N$ pour maximiser 
 le niveau de sécurité.
-Pour chaque approche, 1,000 images stegos avec  
+Pour chaque approche, 1,000 images stégos avec  
 $N=2$, $4$, $6$, $8$, $10$, $12$ et $14$ et dont les supports appartiennent 
 à l'ensemble des 10000 images du challenge BOSS. 
 LA sécurité de l'approche a été évaluée avec le stéganalyseur 
@@ -736,23 +737,16 @@ compte des variations dans celle-ci. Les dérivées secondes sont certes faciles
 %\end{figure}
 
 
-% \section{Conclusion}
-
-% The first contribution of this paper is to propose of a distortion
-% function which is based on second order derivatives. These
-% partial derivatives allow to accurately compute 
-% the level curves and thus to look favorably on pixels
-% without clean level curves. 
-% Two approaches to build these derivatives have been proposed.
-% The first one is based on revisiting kernels usually embedded 
-% in edge detection algorithms. 
-% The second one is based on the polynomial approximation
-% of the bitmap image.
-% These two methods have been completely implemented.
-% The first experiments have shown that the security level 
-% is slightly inferior the one of the most stringent approaches. These first promising results encourage us to deeply investigate this research direction. 
-
-% Future works aiming at improving the security of this proposal are planned as follows. The authors want first to focus on other approaches to provide second order derivatives with larger discrimination power.
-% Then, the objective will be to deeply investigate whether the H\"older norm is optimal when the objective is to avoid null second order derivatives, and to give priority to the largest second order values.
-
-
+\section{Conclusion}
+La principale contribution de ce chapitre est de proposer des 
+fonctions de distorsion basées sur des approximations de dérivées 
+secondes, l'idée sous-jacente étant qu'une zone où les lignes de niveau 
+ne sont pas clairement définies est peu prévisible.
+Deux approches d'approximation ont été présentées.
+La première  basée 
+sur un produit de convolution, exploite des noyaux déjà intégrés dans des
+algorithmes de détection de bords.
+La seconde s'appuie sur une interpolation polynomiale de l'image.
+Ces deux méthodes ont été complètement implantées et leur sécurité 
+face à des stéganalyseurs a été étudiée. Les résultats encouragent 
+à poursuivre dans cette direction.
\ No newline at end of file