+
+Les compétences acquises dans l'étude des algorithmes d'insertion d'une marque
+dans une image nous permettent aussi d'adresser le problème d'insérer un message dans une image. Cependant, il s'agit de privilégier
+cette fois l'imperceptibilité et non plus la robustesse. Ainsi, tandis que
+l'idée principale était d'étaler le message sur un ensemble conséquent
+de pixels pour garantir la robustesse, il s'agit ici de sélectionner finement
+ceux dont les modifications seraient le moins perceptibles possible.
+On pense immédiatement à insérer ces messages dans les pixels
+contenant les zones les plus perturbées.
+Les outils mathématiques d'analyse permettant d'identifier les lignes de niveaux
+pour ensuite voir lesquelles sont les moins régulières (les plus perturbées)
+sont le gradient et la matrice Hessienne.
+Cependant, ces modèles d'analyse ne sont définis que pour des fonctions de $\R^n$ dans $\R$.
+Se pose alors la question sur la possibilité de les adapter au cadre discret
+puisque les images à traiter sont construites à partir de pixels dont les
+valeurs sont discrètes.
+
+
+\section*{Organisation de ce mémoire}
+Ce mémoire est organisé en quatre parties.
+
+La première partie sur les réseaux discrets.
+Dans celle-ci, le chapitre~\ref{chap:sdd} formalise la notion de réseaux booléens
+et leurs modes opératoires. On y définit notamment un nouveau mode opératoire
+assurant la convergence et ce en un temps réduit. Les résultats de convergence suffisants à la compréhension de ce mémoire y sont rappelés et ceux relatifs à ce nouveau mode y sont prouvés.
+
+Le chapitre~\ref{chap:promela} montre comment nous avons développé une démarche
+de preuve automatique de convergence de réseaux discrets. La démarche est
+prouvée correcte et complète: le verdict donné par l'outil est celui qui serait
+donné par une preuve mathématique.
+
+La seconde partie établit globalement le lien entre les réseaux discrets et
+le chaos. Le chapitre~\ref{chap:carachaos} rappelle tout d'abord les notions
+suffisantes concernant la théorie du chaos. Une caractérisation des fonctions engendrant des itérations
+chaotiques y est donnée, selon le mode unaire et le mode généralisé,
+les deux modes au c{\oe}ur de ce mémoire. Un théorème,
+démontré, propose un algorithme permettant de générer des fonctions possédant
+cette caractéristique.
+
+Les itérations unaires de telles fonctions étant chaotiques, nous avons étudié
+au chapitre~\ref{chp:ANN} la possibilité de les faire apprendre par un réseau de neurones, plus précisement par un perceptron multi-couches.
+
+Le titre de la troisième partie donne une idée de la conclusion de
+cette étude puisqu'on y étudie une famille PRNG construite à partir de fonctions
+dont les itérations sont chaotiques.
+Plus précisément, le chapitre~\ref{chap:PRNG:chao} caractérise les PRNG
+construits à partir de réseaux booléens qui sont chaotiques en donnant
+des conditions suffisantes sur la fonction à itérer.
+Le chapitre~\ref{chap:PRNG:gray} s'intéresse donc à générer
+ce type de fonction de manière autrement plus efficace qu'à partir de
+la méthode décrite au chapitre~\ref{chap:carachaos}. On y présente aussi un
+majorant du nombre d'itérations à effectuer pour obtenir une distribution
+uniforme.
+
+Comme annoncé dans les motivations à ce travail, les itérations chaotiques
+peuvent s'appliquer au marquage de média et plus généralement
+au masquage d'information. C'est l'objectif de la quatrième partie.
+
+Dans le premier chapitre de celle-ci (chapitre~\ref{chap:watermarking}), nous
+formalisons le processus de marquage d'information. Grâce à cette formalisation,
+nous pouvons étudier des propriétés de stégo-securité et chaos-sécurité.
+
+Les deux chapitres suivants (chapitre~\ref{chap:watermarking:pdf} et
+chapitre~\ref{chap:stabylo}) sont une parenthèse
+au domaine discret puisqu'on s'intéresse au marquage de document PDF par une
+méthode classique et au masquage d'information par une technique de détection
+de bords.
+
+Le dernier chapitre des contributions (chapitre~\ref{chap:th:yousra})
+retourne dans le monde discret. Il montre qu'on peut approximer efficacement
+à l'aide de matrices discrètes des calculs de gradients pour, \textit{in fine},
+construire des lignes de niveau et embarquer de l'information dans les lignes
+de niveau les moins régulières.
+
+Une conclusion et des perspectives sont données en dernière partie.
+
+\section*{Publications en tant qu'enseignant-chercheur}
+Le tableau de la figure~\ref{fig:bilan} donné
+ci dessous synthétise les références auxquelles j'ai participé
+depuis mon intégration en tant qu'enseignant chercheur.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline
+%& \multicolumn{2}{|c|}{Internationaux} & {Nationaux} & \\
+%\hline
+ Journaux & Conférences \\
+ internationaux & internationales
+\\ \hline
+%journaux
+\cite{bcg12:ij,bcg11:ij,bcgs12:ij}
+&
+% conf inter
+\cite{aagc+15:ip,bcfg12a:ip,bcfg12b:ip,bcfg+13:ip,bcg11:ip}
+
+
+
+\\
+%journaux
+\cite{cds13:ij,ccg15:ij,BDCC16}
+&
+% conf inter
+
+
+\cite{bcg11b:ip,acgs13:onp,chgw+14:onp}
+
+
+\\ %\hline
+
+%journaux
+\cite{ccgh16}
+&
+% conf inter
+\cite{bcgr11:ip,bcgw11:ip,cds12:ip,chgw+14:oip,fccg15:ip}
+
+
+\\ %\hline
+
+%journaux
+
+&
+% conf inter
+\cite{accfg15:ip,DBLP:conf/secrypt/MohammedCG16,ccfg16:ip,kcm16:ip}
+
+
+
+%%%%%%%%%%%%%
+
+
+\\ \hline
+\end{tabular}
+\end{center}
+\caption{Bilan synthétique des publications}\label{fig:bilan}
+\end{figure}
+