]> AND Private Git Repository - hdrcouchot.git/blobdiff - 15RairoGen.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout d'intro et de conclusion
[hdrcouchot.git] / 15RairoGen.tex
index fe1c034ca2c7dd8f515fd0799c896bf7bf3c8ed9..432991fb638780d70496df8040141d53282eeb99 100644 (file)
@@ -5,23 +5,17 @@ a de \og bonnes\fg{} propriétés chaotiques,
 le mot $x^b$ devrait  \og sembler ne plus dépendre\fg{} de $x^0$.
 On peut penser à exploiter une de ces fonctions $G_f$ 
 comme un générateur aléatoire. 
-Enfin, un bon générateur aléatoire se doit de 
-fournir  des nombres selon une distribution uniforme 
-La suite de ce document donnera
-une condition nécessaire est suffisante pour que
-cette propriété soit satisfaite.
 
-
-Cette section présente une application directe de la théorie développée ci-avant
+Ce chapitre  présente donc une application directe
+de la théorie développée ci-avant
 à la génération de nombres pseudo aléatoires. 
-On présente tout d'abord le générateur
-basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}), 
-puis comment intégrer la contrainte de distribution uniforme
-de la sortie 
-dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}). 
-L'approche est évaluée dans la dernière section.
-\JFC{plan à revoir}
+La section~\ref{sub:prng:algo} 
+présente tout d'abord l'algorithme de PRNG. La contrainte de  
+distribution uniforme de la sortie est discutée dans cette section.
+La chaoticité du générateur est ensuite étudiée en 
+section~\ref{prng:unaire:chaos}.
+La section~\ref{sub:prng:algo}  a été publiée à ~\cite{bcgw11:ip,bcgr11:ip}.
+
 
 \section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo}
 
@@ -33,21 +27,19 @@ L'approche est évaluée dans la dernière section.
 \begin{algorithm}[h]
 %\begin{scriptsize}
 \KwIn{une fonction $f$, un nombre d'itérations $b$, 
-une configuration initiale $x^0$ ($n$ bits)}
-\KwOut{une configuration $x$ ($n$ bits)}
+une configuration initiale $x^0$ (${\mathsf{N}}$ bits)}
+\KwOut{une configuration $x$ (${\mathsf{N}}$ bits)}
 $x\leftarrow x^0$\;
-$k\leftarrow b $\;
 %$k\leftarrow b + \textit{XORshift}(b+1)$\;
-\For{$i=1,\dots,k$}
+\For{$i=1,\dots,b$}
 {
-$s\leftarrow{\textit{Random}(n)}$\;
+$s\leftarrow{\textit{Random}({\mathsf{N}})}$\;
 %$s\leftarrow{\textit{XORshift}(n)}$\;
-$x\leftarrow{F_{f_u}(s,x)}$\;
+$x\leftarrow{F_{f_u}(x,s)}$\;
 }
 return $x$\;
 %\end{scriptsize}
-\caption{Algorithme de génération de nombres pseudo aléatoires 
-à l'aide de la fonction chaotique $G_f$}
+\caption{PRNG basé sur les itérations unaires.}
 \label{CI Algorithm}
 \end{algorithm}
 
@@ -57,54 +49,62 @@ aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous.
 
 
 Celui-ci prend en entrée: une fonction $f$;
-un entier $b$, qui assure que le nombre d'itérations
-est compris entre $b+1 $ et  $2b+1$ (et donc supérieur à $b$) 
+un entier $b$, qui est le nombre d'itérations à effectuer entre deux sorties 
 et une configuration initiale $x^0$.
 Il retourne une nouvelle configuration $x$ en appliquant 
-la fonction $F_{f_u}$ vue au chapitre~\ref{chap:carachaos} et correspondant 
+la fonction $F_{f_u}$ (équation~\ref{eq:iterations:unaires}
+vue au chapitre~\ref{chap:carachaos}) et correspondant 
 à des itérations unaires.
 En interne, il exploite un algorithme de génération
-de nombres pseudo aléatoires
-\textit{Random}$(l)$. 
-Cet algorithme est utilisée dans notre générateur pour construire la longueur 
-de la stratégie ainsi que les éléments qui la composent.
-Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ 
-selon une distribution uniforme et utilise 
-\textit{XORshift} qui est une classe de générateurs de
-nombres pseudo aléatoires conçus par George Marsaglia. 
-
-
-L'algorithme \textit{XORshift} 
-exploite itérativement l'opérateur $\oplus$  
-sur des nombres obtenus grâce à des décalages de bits.
-Cet opérateur, défini dans $\Bool^{n}$, 
-applique la fonction \og  xor \fg{} 
-aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
-Une instance de cette classe est donnée dans l'algorithme~\ref{XORshift} donné 
-ci-dessous.
-
-\begin{algorithm}[h]
-%\SetLine
-\KwIn{la configuration interne $z$ (un mot de 32-bit)}
-\KwOut{$y$ (un mot de 32-bits)}
-$z\leftarrow{z\oplus{(z\ll13)}}$\;
-$z\leftarrow{z\oplus{(z\gg17)}}$\;
-$z\leftarrow{z\oplus{(z\ll5)}}$\;
-$y\leftarrow{z}$\;
-return $y$\;
-\medskip
-\caption{Une boucle de l'algorithme de \textit{XORshift}}
-\label{XORshift}
-\end{algorithm}
+de nombres pseudo aléatoires donné en paramètre.
+Cela peut être n'importe quel PRNG (XORshift, Mersenne-Twister) dont la 
+sortie est uniformément distribuée.
+Notre approche vise a donner des propriétés de chaos a ce générateur embarqué.
+
+
+% \textit{Random}$(l)$. 
+% Cet algorithme est utilisée dans notre générateur pour construire la longueur 
+% de la stratégie ainsi que les éléments qui la composent.
+% Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$ 
+% selon une distribution uniforme et utilise 
+% \textit{XORshift} qui est une classe de générateurs de
+% nombres pseudo aléatoires conçus par George Marsaglia. 
+
+
+% L'algorithme \textit{XORshift} 
+% exploite itérativement l'opérateur $\oplus$  
+% sur des nombres obtenus grâce à des décalages de bits.
+% Cet opérateur, défini dans $\Bool^{n}$, 
+% applique la fonction \og  xor \fg{} 
+% aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
+% Une instance de cette classe est donnée dans l'algorithme~\ref{XORshift} donné 
+% ci-dessous.
+
+% \begin{algorithm}[h]
+% %\SetLine
+% \KwIn{la configuration interne $z$ (un mot de 32-bit)}
+% \KwOut{$y$ (un mot de 32-bits)}
+% $z\leftarrow{z\oplus{(z\ll13)}}$\;
+% $z\leftarrow{z\oplus{(z\gg17)}}$\;
+% $z\leftarrow{z\oplus{(z\ll5)}}$\;
+% $y\leftarrow{z}$\;
+% return $y$\;
+% \medskip
+% \caption{Une boucle de l'algorithme de \textit{XORshift}}
+% \label{XORshift}
+% \end{algorithm}
 
 
 Nous avons vu au chapitre~\ref{chap:carachaos} que 
 $G_{f_u}$ est chaotique dans l'espace $\mathcal{X}_u$ 
 si et seulement le graphe d'itérations $\textsc{giu}(f)$ 
-doit être fortement connexe.
+est fortement connexe.
 Pour $b=1$, l'algorithme itère la fonction $F_{f_u}$.
-Regardons comment l'uniformité de la distribution a
-contraint la fonction.
+
+Pour simuler au mieux l'aléa, un bon générateur de nombre pseudo-aléatoires
+se doit de fournir  des nombres selon une distribution uniforme.
+Regardons comment l'uniformité de la distribution 
+contraint la fonction $f$ à itérer.
 
 \subsection{Un générateur à sortie uniformément distribuée}\label{sub:prng:unif}
 
@@ -117,7 +117,7 @@ Enfin, une matrice stochastique de taille $n \times n$ est régulière
 si  la propriété suivante est établie:
 $$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
 
-On énonce enfin le théorème suivant liant les 
+On énonce le théorème classique suivant liant les 
 vecteur de probabilités 
 et les chaînes de Markov.
 
@@ -178,7 +178,8 @@ que cela l'est pour $h$.
       \end{minipage}
       \label{fig:h:iter}
     }    \end{center}
-    \caption{Graphes d'itérations de fonctions booléennes dans $\Bool^2$}
+    \caption{Graphes des itérations unaires 
+      de fonctions booléennes dans $\Bool^2$}
     \label{fig:xplgraphIter}
   \end{figure}
 
@@ -295,24 +296,28 @@ ait une distribution suffisamment proche de la distribution uniforme.
 
 On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
 
-\begin{theorem}
+\begin{restatable}[Uniformité de la sortie de l'algorithme~\ref{CI Algorithm}]{theorem}{PrngCIUniforme}\label{thm:prng:u}
   Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
   graphe d'itérations , $\check{M}$ sa matrice d'adjacence
-  et $M$ une matrice  $2^n\times 2^n$  définie comme dans le lemme précédent.
+  et $M$ une matrice  $2^n\times 2^n$  
+  définie par 
+  $M = \dfrac{1}{n} \check{M}$.
   Si $\textsc{giu}(f)$ est fortement connexe, alors 
   la sortie du générateur de nombres pseudo aléatoires détaillé par 
   l'algorithme~\ref{CI Algorithm} suit une loi qui 
   tend vers la distribution uniforme si 
   et seulement si  $M$ est une matrice doublement stochastique.
-\end{theorem}
+\end{restatable}
 
 
 \subsection{Quelques exemples}
 
-On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}.
-On a vu qu'il y avait  520 fonctions $f$ non isomorphes de graphe d'interactions  $\Gamma(f)$, 
-dont seulement 16 d'entre elles possèdent une matrice doublement stochastique.
+On considère le graphe d'interactions $\Gamma(f)$ donné
+en figure~\ref{fig:G}. C'est le même qui a été présenté
+à la section~\ref{sec:11FCT}.
+On a vu qu'il y avait  520 fonctions $f$ non isomorphes de graphe d'interactions  $\Gamma(f)$. 
 
+Seulement 16 d'entre elles possèdent une matrice doublement stochastique.
 La figure~\ref{fig:listfonction} explicite ces 16 fonctions en 
 définissant les images des éléments de la liste
 0, 1, 2,\ldots, 14, 15 en respectant  l'ordre.
@@ -336,11 +341,11 @@ ce vecteur au vecteur $\pi=(\frac{1}{2^n},\ldots,\frac{1}{2^n})$
 Ainsi, on a 
 \begin{equation}
 b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket} 
-\{
-\min \{
+\left\{
+\min \left\{
  t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
-\}
-\}. 
+\right\}
+\right\}. 
 \label{eq:mt:ex}
 \end{equation}
 
@@ -437,11 +442,11 @@ Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformém
 se rapprocher de cette distribution nécessite en effet un nombre plus élevé
 d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire 
 d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près.
-Montrer les sous-séquences de suites chaotiques ainsi générées  demeurent chaotiques
+Montrer que les sous-séquences de suites chaotiques ainsi générées  demeurent chaotiques
 est l'objectif de la section suivante.
 
 
-\section{Un PRNG basé sur des itérations unaires qui est chaotique }
+\section{Un PRNG basé sur des itérations unaires qui est chaotique }\label{prng:unaire:chaos}
 
 Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires 
 présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente 
@@ -457,15 +462,14 @@ Intuitivement, c'est le nombre d'itérations qu'il est autorisé de faire.
 On ordonne les $\mathsf{p}$ éléments de $\mathcal{P}$ comme suit: 
 $\mathcal{P} = \{ p_1, p_2, \hdots, p_\mathsf{p}\}$
 et $p_1< p_2< \hdots < p_\mathsf{p}$.
+
 Dans l'algorithme~\ref{CI Algorithm}, 
 $\mathsf{p}$ vaut 1 et  $p_1=b$. 
-
-
 Cet  algorithme peut être vu comme $b$ compostions de la fonction $F_{f_u}$.
 Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
 compositions fonctionnelles de $F_{f_u}$.
 Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
-$F_{{f_u},p_i} :  \mathds{B}^\mathsf{N} \times \llbracket 1, \mathsf{N} \rrbracket^{p_i}
+$F_{{f_u},p_i} :  \mathds{B}^\mathsf{N} \times [\mathsf{N}]^{p_i}
 \rightarrow \mathds{B}^\mathsf{N}$ définie par
 
 $$
@@ -477,11 +481,11 @@ $$
 on construit l'espace 
  $\mathcal{X}_{\mathsf{N},\mathcal{P}}=  \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}}$, où
 $\mathds{S}_{\mathsf{N},\mathcal{P}}=
-\llbracket 1, \mathsf{N} \rrbracket^{\Nats}\times 
+[\mathsf{N}]^{\Nats}\times 
 \mathcal{P}^{\Nats}$. 
 Chaque élément de l'espace est une paire où le premier élément est 
 un $\mathsf{N}$-uplet de  $\Bool^{\mathsf{N}}$ (comme dans $\mathcal{X}_u$).
-Le second élément est aussi une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats})$ de suites infinies.
+Le second élément est une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats})$ de suites infinies.
 La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
 La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
 
@@ -522,7 +526,7 @@ Soit  $x=(e,s)$ et $\check{x}=(\check{e},\check{s})$ dans
 $\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}} $,
 où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} = 
 \mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$. 
-\begin{itemize}
+\begin{enumerate}
 \item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. 
 La distance de Hamming $d_{\mathds{B}^\mathsf{N}}$ sur entre les 
 décompositions binaires de $e$ et de $\check{e}$ (\textit{i.e.}, le 
@@ -537,7 +541,7 @@ $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v
 Plus précisément, soit 
 $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et 
 $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
-\begin{itemize}
+\begin{enumerate}
 \item Les $p$ premiers éléments de $d(x,\check{x})$ sont $|v^0-\check{v}^0|$ 
   écrits en base 10 et sur $p$ indices;
 \item les $n\times \max{(\mathcal{P})}$ éléments suivants servent 
@@ -545,7 +549,7 @@ $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
   $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. 
   Les $n$ premiers éléments sont $|u^0-\check{u}^0|$. Il sont suivis de 
 $|u^1-\check{u}^1|$ écrits à l'aide de $n$ éléments, etc.
-\begin{itemize}
+\begin{enumerate}
 \item Si
 $v^0=\check{v}^0$,
 alors le processus se continue jusqu'à $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ et la 
@@ -556,10 +560,10 @@ $p+n\times \max{(\mathcal{P})}$ éléments.
 éléments sont $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
 $\check{u}^{v^0}$ (sur $n$ éléments), ..., $\check{u}^{\check{v}^0-1}$ (sur $n$ éléments), suivi par des 0, si besoin.
 \item Le cas $v^0>\check{v}^0$ est similaire, et donc omis
-\end{itemize}
+\end{enumerate}
 \item Les $p$ suivants sont $|v^1-\check{v}^1|$, etc.
-\end{itemize}
-\end{itemize}
+\end{enumerate}
+\end{enumerate}
 
 
 La fonction $d$ peut se formaliser comme suit:
@@ -599,8 +603,10 @@ $\check{s}=\left\{
 \check{v}=2,1,...
 \end{array}
 \right.$.
-
-Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
+Ainsi 
+\[
+d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 
+0.01~0004000000000000000000~01~1005 \dots\]
 En effet, les $p=2$ premiers éléments sont  01, c'est-à-dire 
 $|v^0-\check{v}^0|=1$, 
 et on utilise $p$ éléments pour représenter cette différence
@@ -614,42 +620,44 @@ la chaîne obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
 De manière similaire, les $\check{v}^0=2$ premiers
 termes de $\check{u}$ sont représentés par 
 0604000000000000000000.
-LA valeur absolue de leur différence est égale à 
+La valeur absolue de leur différence est égale à 
 0004000000000000000000.
 Ces éléments sont concaténés avec 01. On peut construire alors le reste de 
 la séquence.
 \end{xpl}
 
 
-\begin{xpl}
-On considère à présent que  $\mathsf{N}=9$, que $\mathcal{P}=\{2,7\}$ et que
-$$s=\left\{
-\begin{array}{l}
-u=\underline{6,7,} ~ \underline{4,2,} ...\\
-v=2,2,...
-\end{array}
-\right.$$
-avec
-$$\check{s}=\left\{
-\begin{array}{l}
-\check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
-\check{v}=7,2,...
-\end{array}
-\right.
-$$
+\begin{xpl}
+On considère à présent que  $\mathsf{N}=9$, que $\mathcal{P}=\{2,7\}$ et que
+$$s=\left\{
+\begin{array}{l}
+u=\underline{6,7,} ~ \underline{4,2,} ...\\
+v=2,2,...
+\end{array}
+\right.$$
+avec
+$$\check{s}=\left\{
+\begin{array}{l}
+\check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
+\check{v}=7,2,...
+\end{array}
+\right.
+$$
 
-Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, 
-puisque 
-$|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
-et $|9800000-4200000| = 5600000$.
-\end{xpl}
+Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, 
+puisque 
+$|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
+et $|9800000-4200000| = 5600000$.
+\end{xpl}
 
 
 
 On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}.
-\begin{lemma}
+
+
+\begin{restatable}[Une distance dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$]{theorem}{distancedsxnp}
 $d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
-\end{lemma}
+\end{restatable}
 
 
 \subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant  $\textsc{giu}(f)$}
@@ -661,8 +669,9 @@ définit le graphe orienté $\textsc{giu}_{\mathcal{P}}(f)$ de la manière suiva
 %\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples 
 %  having their elements in $\llbracket 1, \mathsf{N} \rrbracket $.
 \item il y a un arc libellé $u_0, \hdots, u_{p_i-1}$, $i \in \llbracket 1, \mathsf{p} \rrbracket$ entre les n{\oe}uds $x$ et $y$ si et seulement si $p_i$ est un élément de 
-$\mathcal{P}$ (\textit{i.e.}, on peut itérer $p_i$ fois), 
-chaque $u_k$ de la suite appartient à $[\mathsf{N}]$ et 
+$\mathcal{P}$ (\textit{i.e.}, on peut itérer $p_i$ fois), et pour chaque 
+$k$, $0 \le k \le p_i-1$, on a 
+ $u_k$ qui appartient à  $[\mathsf{N}]$ et 
 $y=F_{f_u,p_i} (x, (u_0, \hdots, u_{p_i-1})) $.
 \end{itemize}
 Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{giu}(f)$.
@@ -676,7 +685,7 @@ Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{g
     \subfigure[$\textsc{giu}_{\{2\}}(h)$]{
       \begin{minipage}{0.30\textwidth}
         \begin{center}
-          \includegraphics[height=4cm]{images/h2prng}
+          \includegraphics[scale=0.5]{images/h2prng}
         \end{center}
       \end{minipage}
       \label{fig:h2prng}
@@ -684,7 +693,7 @@ Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{g
     \subfigure[$\textsc{giu}_{\{3\}}(h)$]{
       \begin{minipage}{0.40\textwidth}
         \begin{center}
-          \includegraphics[height=4cm]{images/h3prng}
+          \includegraphics[scale=0.5]{images/h3prng}
         \end{center}
       \end{minipage}
       \label{fig:h3prng}
@@ -692,7 +701,7 @@ Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{g
     \subfigure[$\textsc{giu}_{\{2,3\}}(h)$]{
       \begin{minipage}{0.40\textwidth}
         \begin{center}
-          \includegraphics[height=4cm]{images/h23prng}
+          \includegraphics[scale=0.5]{images/h23prng}
         \end{center}
       \end{minipage}
       \label{fig:h23prng}
@@ -725,27 +734,36 @@ Le dernier donnerait le comportement d'un générateur qui s'autoriserait
 
 \subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
 
-Le théorème suivant, similaire à celui dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$
+Le théorème suivant, similaire à ceux dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$
 est prouvé en annexes~\ref{anx:generateur}.
 
-\begin{theorem}
+\begin{restatable}[Conditions pour la choticité de $G_{f_u,\mathcal{P}}$]{theorem}{thmchoticitgfp}
 La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur 
  $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si 
-graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ 
+le graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$ 
 est fortement connexe.
-\end{theorem}
-On alors corollaire suivant 
-
-\begin{corollary}
-  Le générateur de nombre pseudo aléatoire détaillé 
-  à l'algorithme~\ref{CI Algorithm}
-  n'est pas chaotique 
-  sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
-\end{corollary}
-\begin{proof}
-  Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
-  Que $b$ soit pair ou impair,  $\textsc{giu}_{\mathcal{b}}(f)$
-  n'est pas fortement connexe.
-\end{proof}
-
+\end{restatable}
+% On alors corollaire suivant 
+
+% \begin{corollary}
+%   Le générateur de nombre pseudo aléatoire détaillé 
+%   à l'algorithme~\ref{CI Algorithm}
+%   n'est pas chaotique 
+%   sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
+% \end{corollary}
+% \begin{proof}
+%   Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
+%   Que $b$ soit pair ou impair,  $\textsc{giu}_{\{b\}}(f)$
+%   n'est pas fortement connexe.
+% \end{proof}
+
+
+\section{Conclusion}
+Ce chapitre a proposé un algorithme permettant de construire un 
+PRNG chaotique à partir d'un PRNG existant. Pour ce faire, il est nécessaire 
+et suffisant que la fonction $f$ qui est itérée un nombre $b$ de fois 
+possède un $\textsc{giu}_{\{b\}}(f)$ fortement connexe et que sa matrice de Markov associée soit doublement stochastique.
+Le chapitre suivant montre comment construire une telle fonction.