]> AND Private Git Repository - hdrcouchot.git/blobdiff - 14Secrypt.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
après remarques tof
[hdrcouchot.git] / 14Secrypt.tex
index 5e4cafc4272a23dbcf3348975b5b5cec818ea973..84b5302b7038c6c1950a7f11bd381043d26d908b 100644 (file)
@@ -20,10 +20,11 @@ une distribution uniforme est étudiée théoriquement et pratiquement à la
 section~\ref{sec:mixing}.
 L'extension du travail aux itérations généralisées est présentée à la 
 section~\ref{sec:prng:gray:general}.
-Finalement, des instances de PRNGS engendrés selon les méthodes détaillées dans 
-ce chapitre sont présentés en section~\ref{sec:prng;gray:tests}.
-Les sections~\ref{sec:plc} à~\ref{sub:gray} ont été publiées 
+Finalement, des instances de PRNGs engendrés selon les méthodes détaillées dans 
+ce chapitre sont présentées en section~\ref{sec:prng;gray:tests}.
+Les sections~\ref{sec:plc}  à~\ref{sub:gray} ont été publiées 
 à~\cite{chgw+14:oip}.
+La section~\ref{sec:mixing} est publiée dans~\cite{ccgh16}.
 
 
 % This aim of this section is to show 
@@ -49,7 +50,7 @@ On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\ma
 configuration $i$ est inférieur à ${\mathsf{N}}$;
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
-si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
+si et seulement si $M_{ij}$ vaut 1 (et 0 sinon);
 \item pour chaque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
 la matrice est stochastique à droite; 
 \item pour chaque indice de colonne $j$, 
@@ -407,7 +408,7 @@ Enfin, les auteurs de~\cite{ZanSup04} présentent une extension de l'algorithme
 principalement de prouver que si $\mathsf{N}$ est une puissance de 2, 
 le code de Gray équilibré engendré par l'extension est toujours totalement équilibré et 
 que $S_{\mathsf{N}}$ est la séquence de transition d'un code de Gray de $\mathsf{N}$ bits 
-si  $S_{\mathsf{N}-2}$ l'est aussi.. 
+si  $S_{\mathsf{N}-2}$ l'est aussi. 
 Cependant les auteurs ne prouvent pas que leur approche fournit systématiquement  
 un code de Gray (totalement) équilibré. 
 Cette section montre que ceci est vrai en rappelant tout d'abord
@@ -620,7 +621,7 @@ $\textit{fair}\leftarrow\emptyset$\;
 }
 \Return{$\textit{nbit}$}\;
 %\end{scriptsize}
-\caption{Pseudo Code pour évaluer le temps d'arrêt}
+\caption{Pseudo-code pour évaluer le temps d'arrêt}
 \label{algo:stop}
 \end{algorithm}
 
@@ -683,7 +684,7 @@ généralisées.
   définie par 
   $M = \dfrac{1}{2^n} \check{M}$.
   Si $\textsc{gig}(f)$ est fortement connexe, alors 
-  la sortie du générateur de nombres pseudo aléatoires détaillé par 
+  la sortie du générateur de nombres pseudo-aléatoires détaillé par 
   l'algorithme~\ref{CI Algorithm:prng:g} suit une loi qui 
   tend vers la distribution uniforme si 
   et seulement si  $M$ est une matrice doublement stochastique.