section~\ref{sec:mixing}.
L'extension du travail aux itérations généralisées est présentée à la
section~\ref{sec:prng:gray:general}.
-Finalement, des instances de PRNGS engendrés selon les méthodes détaillées dans
-ce chapitre sont présentés en section~\ref{sec:prng;gray:tests}.
-Les sections~\ref{sec:plc} à~\ref{sub:gray} ont été publiées
+Finalement, des instances de PRNGs engendrés selon les méthodes détaillées dans
+ce chapitre sont présentées en section~\ref{sec:prng;gray:tests}.
+Les sections~\ref{sec:plc} à~\ref{sub:gray} ont été publiées
à~\cite{chgw+14:oip}.
+La section~\ref{sec:mixing} est publiée dans~\cite{ccgh16}.
% This aim of this section is to show
configuration $i$ est inférieur à ${\mathsf{N}}$;
\item pour $j \neq i$, $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$
-si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
+si et seulement si $M_{ij}$ vaut 1 (et 0 sinon);
\item pour chaque indice de ligne $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$:
la matrice est stochastique à droite;
\item pour chaque indice de colonne $j$,
principalement de prouver que si $\mathsf{N}$ est une puissance de 2,
le code de Gray équilibré engendré par l'extension est toujours totalement équilibré et
que $S_{\mathsf{N}}$ est la séquence de transition d'un code de Gray de $\mathsf{N}$ bits
-si $S_{\mathsf{N}-2}$ l'est aussi..
+si $S_{\mathsf{N}-2}$ l'est aussi.
Cependant les auteurs ne prouvent pas que leur approche fournit systématiquement
un code de Gray (totalement) équilibré.
Cette section montre que ceci est vrai en rappelant tout d'abord
}
\Return{$\textit{nbit}$}\;
%\end{scriptsize}
-\caption{Pseudo Code pour évaluer le temps d'arrêt}
+\caption{Pseudo-code pour évaluer le temps d'arrêt}
\label{algo:stop}
\end{algorithm}
définie par
$M = \dfrac{1}{2^n} \check{M}$.
Si $\textsc{gig}(f)$ est fortement connexe, alors
- la sortie du générateur de nombres pseudo aléatoires détaillé par
+ la sortie du générateur de nombres pseudo-aléatoires détaillé par
l'algorithme~\ref{CI Algorithm:prng:g} suit une loi qui
tend vers la distribution uniforme si
et seulement si $M$ est une matrice doublement stochastique.