]> AND Private Git Repository - hdrcouchot.git/blobdiff - 15RairoGen.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
après remarques tof
[hdrcouchot.git] / 15RairoGen.tex
index a57e19f8e3d4028e850c0db6abf1133b9d43c9d3..38920d84a268272246b2ab2c3ac81a4112f58e3d 100644 (file)
@@ -8,7 +8,7 @@ comme un générateur aléatoire.
 
 Ce chapitre  présente donc une application directe
 de la théorie développée ci-avant
-à la génération de nombres pseudo aléatoires. 
+à la génération de nombres pseudo-aléatoires. 
 La section~\ref{sub:prng:algo} 
 présente tout d'abord l'algorithme de PRNG. La contrainte de  
 distribution uniforme de la sortie est discutée dans cette section.
@@ -17,7 +17,7 @@ section~\ref{prng:unaire:chaos}.
 La section~\ref{sub:prng:algo}  a été publiée à ~\cite{bcgw11:ip,bcgr11:ip}.
 
 
-\section{ Nombres pseudo aléatoires construits par itérations unaires}\label{sub:prng:algo}
+\section{ Nombres pseudo-aléatoires construits par itérations unaires}\label{sub:prng:algo}
 
 
 
@@ -44,8 +44,8 @@ return $x$\;
 \end{algorithm}
 
 \subsection{Algorithme d'un générateur}
-On peut penser à construire un générateur de nombres pseudo 
-aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous.
+On peut penser à construire un générateur de nombres 
+pseudo-aléatoires comme dans l'algorithme~\ref{CI Algorithm} donné ci-dessous.
 
 
 Celui-ci prend en entrée: une fonction $f$;
@@ -56,7 +56,7 @@ la fonction $F_{f_u}$ (équation~\ref{eq:iterations:unaires}
 vue au chapitre~\ref{chap:carachaos}) et correspondant 
 à des itérations unaires.
 En interne, il exploite un algorithme de génération
-de nombres pseudo aléatoires donné en paramètre.
+de nombres pseudo-aléatoires donné en paramètre.
 Cela peut être n'importe quel PRNG (XORshift, Mersenne-Twister) dont la 
 sortie est uniformément distribuée.
 Notre approche vise a donner des propriétés de chaos à ce générateur embarqué.
@@ -139,7 +139,7 @@ et les chaînes de Markov.
 
 Montrons sur un exemple jouet à deux éléments 
 que ce théorème permet de vérifier si la sortie d'un générateur de 
-nombres pseudo aléatoires est uniformément distribuée ou non.
+nombres pseudo-aléatoires est uniformément distribuée ou non.
 Soient alors $g$ et $h$ deux fonctions  de $\Bool^2$
 définies par $g(x_1,x_2)=(\overline{x_1},x_1.\overline{x_2}) $
 et $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$.
@@ -149,7 +149,7 @@ Leurs graphes d'itérations
 sont donc fortement connexes, ce que l'on peut vérifier aux figures~\ref{fig:g:iter} 
 et~\ref{fig:h:iter}.
 \textit{A priori}, ces deux fonctions pourraient être intégrées
-dans un générateur de nombres pseudo aléatoires. Montrons que ce n'est pas le cas pour $g$ et 
+dans un générateur de nombres pseudo-aléatoires. Montrons que ce n'est pas le cas pour $g$ et 
 que cela l'est pour $h$.
 
 
@@ -283,10 +283,10 @@ Alors d'après le théorème~\ref{th},
 pour n'importe quel vecteur initial de probabilités $\pi^0$, on a 
 $\lim_{k \to \infty} \pi^0 M^k_g = \pi_g$ et 
 $\lim_{k \to \infty} \pi^0 M^k_h = \pi_h$. 
-Ainsi la chaîne de Markov associé à $h$ tend vers une 
+Ainsi la chaîne de Markov associée à $h$ tend vers une 
 distribution uniforme, contrairement à celle associée à $g$.
 On en déduit que $g$ ne devrait pas être itérée dans 
-un générateur de nombres pseudo aléatoires.
+un générateur de nombres pseudo-aléatoires.
 Au contraire, 
 $h$ devrait pouvoir être embarquée dans l'algorithme~\ref{CI Algorithm}, 
 pour peu que le nombre $b$ d'itérations entre deux mesures successives 
@@ -303,7 +303,7 @@ On énonce directement le théorème suivant dont la preuve est donnée en annex
   définie par 
   $M = \dfrac{1}{n} \check{M}$.
   Si $\textsc{giu}(f)$ est fortement connexe, alors 
-  la sortie du générateur de nombres pseudo aléatoires détaillé par 
+  la sortie du générateur de nombres pseudo-aléatoires détaillé par 
   l'algorithme~\ref{CI Algorithm} suit une loi qui 
   tend vers la distribution uniforme si 
   et seulement si  $M$ est une matrice doublement stochastique.
@@ -325,7 +325,7 @@ Expliquons enfin comment a été calculé le nombre de la troisième
 colonne utilisé comme le paramètre $b$ 
 dans l'algorithme~\ref{CI Algorithm}.
 
-Soit $e_i$ le $i^{\textrm{ème}}$ vecteur la base canonique de $\R^{2^{n}}$. 
+Soit $e_i$ le $i^{\textrm{ème}}$ vecteur de la base canonique de $\R^{2^{n}}$. 
 Chacun des éléments $v_j$, $1 \le j \le 2^n$, 
 du vecteur $e_i M_f^t$ représente la probabilité 
 d'être dans la configuration $j$ après $t$ étapes du processus de Markov 
@@ -431,7 +431,7 @@ $\mathcal{F}_{16}$ &14, 15, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 
 La qualité des séquences aléatoires a été évaluée à travers la suite 
 de tests statistiques développée pour les générateurs de nombres 
-pseudo aléatoires par le 
+pseudo-aléatoires par le 
 \emph{National Institute of Standards and Technology} (NIST).
 L'expérience a montré notamment que toutes ces fonctions
 passent avec succès cette batterie de tests.