]> AND Private Git Repository - hdrcouchot.git/blobdiff - 14Secrypt.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
avant les expé
[hdrcouchot.git] / 14Secrypt.tex
index b7cb0d398c9e99eeb53a93f531134b820d910661..f74f8fea820211eba3188e552810deb144fbde3b 100644 (file)
@@ -13,17 +13,17 @@ graphe d'itérations, ce qui revient à supprimer en chaque n{\oe}ud de ce graph
 arête sortante et une arête entrante.
 
 
 arête sortante et une arête entrante.
 
 
-This aim of this section is to show 
-that finding DSSC matrices from a hypercube
-is a typical finite domain satisfaction 
-problem, classically denoted as 
-Constraint Logic Programming on Finite Domains (CLPFD). 
-This part is addressed in the first section. Next, we analyse the first
-results to provide a generation of DSSC matrices with small mixing times. 
+This aim of this section is to show 
+that finding DSSC matrices from a hypercube
+is a typical finite domain satisfaction 
+problem, classically denoted as 
+Constraint Logic Programming on Finite Domains (CLPFD). 
+This part is addressed in the first section. Next, we analyse the first
+results to provide a generation of DSSC matrices with small mixing times. 
 
 \section{Programmation logique par contraintes sur des domaines finis}
 Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. 
 
 \section{Programmation logique par contraintes sur des domaines finis}
 Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. 
-Pour éviter d'avoir à gérér des fractions, on peut considérer que 
+Pour éviter d'avoir à gérer des fractions, on peut considérer que 
 les matrices (d'incidence) à générer ont des lignes et des colonnes dont les 
 sommes valent ${\mathsf{N}}$ à chaque fois.  
 On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\mathsf{N}}$ telles que 
 les matrices (d'incidence) à générer ont des lignes et des colonnes dont les 
 sommes valent ${\mathsf{N}}$ à chaque fois.  
 On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\mathsf{N}}$ telles que 
@@ -37,16 +37,16 @@ configuration $i$ est inférieur à ${\mathsf{N}}$;
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
 si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
 si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
-\item pour chque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
+\item pour chaque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
 la matrice est stochastique à droite; 
 la matrice est stochastique à droite; 
-\item pour chque indice de colonne $j$, 
+\item pour chaque indice de colonne $j$, 
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
 \item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
   $1 \le j\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le i\le 2^{\mathsf{N}}} M_{ij}$: 
   la matrice est stochastique à gauche;
 \item Toutes les éléments de la somme $\sum_{1\le k\le 2^{\mathsf{N}}}M^k$ sont strictement positif, \textit{i.e.}, le graphe $\textsc{giu}(f)$ est fortement connexe;
 \end{enumerate}
 Ce problème s'exprime sur des domaines finis entiers avec des opérateurs  
-arithmétiques simples (sommes et poduits). il pourrait théoriquement être 
-traité par desdémarches de programation logique par contrainte
+arithmétiques simples (sommes et produits). il pourrait théoriquement être 
+traité par des démarches de programmation logique par contrainte
 sur des domaines finis (comme en PROLOG).
 L'algorithme donné en Figure~\ref{fig:prolog}
 est en effet le c{\oe}ur du programme PROLOG 
 sur des domaines finis (comme en PROLOG).
 L'algorithme donné en Figure~\ref{fig:prolog}
 est en effet le c{\oe}ur du programme PROLOG 
@@ -83,10 +83,10 @@ bistoc(X):-
   allpositive(S4).
 \end{lstlisting}
 \end{scriptsize}
   allpositive(S4).
 \end{lstlisting}
 \end{scriptsize}
-\caption{Prolog Problem to Find DSSC Matrix when $n=2$}\label{fig:prolog}
+\caption{Code PROLOG permettant de trouver toutes les matrices DSSC pour $n=2$}\label{fig:prolog}
 \end{figure}
 
 \end{figure}
 
-Enfin, on définit la relation $\mathcal{R}$, qui est établie pourles deux 
+Enfin, on définit la relation $\mathcal{R}$, qui est établie pour les deux 
 fonctions  $f$ et $g$ si leur graphes 
 respectifs  $\textsf{giu}(f)$ et $\textsf{giu}(g)$ 
 sont isomorphes.
 fonctions  $f$ et $g$ si leur graphes 
 respectifs  $\textsf{giu}(f)$ et $\textsf{giu}(g)$ 
 sont isomorphes.
@@ -94,7 +94,7 @@ C'est évidemment une relation d'équivalence.
 
 
 
 
 
 
-\subsection{Analyse de l'approche}
+\subsection{Analyse de l'approche}\label{sub:prng:ana}
 Exécutée sur un ordinateur personnelle, PROLOG trouve 
 en moins d'une seconde les
 49 solutions pour  $n=2$, 
 Exécutée sur un ordinateur personnelle, PROLOG trouve 
 en moins d'une seconde les
 49 solutions pour  $n=2$, 
@@ -105,16 +105,16 @@ Cependant, l'approche ne permet pas d'engendrer toutes les solutions
 pour $n=4$.
 Cette approche, basée sur une démarche de type \emph{générer, tester} ne peut 
 pas être retenue pour $n$ de grande taille, même 
 pour $n=4$.
 Cette approche, basée sur une démarche de type \emph{générer, tester} ne peut 
 pas être retenue pour $n$ de grande taille, même 
-en s'appuyant sur l'éfficience de l'algorithme de backtrack natif de PROLOG.
+en s'appuyant sur l'efficience de l'algorithme de backtrack natif de PROLOG.
 
 Cependant, pour des valeurs de $n$ petites, nous avons 
 
 Cependant, pour des valeurs de $n$ petites, nous avons 
-comparé les fonctions non équivalantes selon leur proportion
+comparé les fonctions non équivalentes selon leur proportion
 à engendrer des temps de mélange petits (cf. équation~\ref{eq:mt:ex}).
 
 
 
 
 à engendrer des temps de mélange petits (cf. équation~\ref{eq:mt:ex}).
 
 
 
 
-\begin{xpl}
+\begin{xpl}\label{xpl:mixing:3}
 Le tableau~\ref{table:mixing:3} fournit les 5 fonctions booléennes 
 qui ont les temps de mélange les plus petits pour $\varepsilon=10^{-5}$. 
 \begin{table}[ht]
 Le tableau~\ref{table:mixing:3} fournit les 5 fonctions booléennes 
 qui ont les temps de mélange les plus petits pour $\varepsilon=10^{-5}$. 
 \begin{table}[ht]
@@ -126,13 +126,13 @@ $$
 \hline
 f^a &  (x_2 \oplus x_3, x_1 \oplus \overline{x_3},\overline{x_3})  &  16   \\
 \hline
 \hline
 f^a &  (x_2 \oplus x_3, x_1 \oplus \overline{x_3},\overline{x_3})  &  16   \\
 \hline
-f^*  &  (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
-\overline{x_1}\overline{x_3} + x_1x_2)  &  17   \\
+f^*  &  (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
+\overline{x_1}.\overline{x_3} + x_1x_2)  &  17   \\
 \hline
 \hline
-f^b  &  (\overline{x_1}(x_2+x_3) + x_2x_3,\overline{x_1}(\overline{x_2}+\overline{x_3}) + \overline{x_2}\overline{x_3}, &  \\
+f^b  &  (\overline{x_1}(x_2+x_3) + x_2x_3,\overline{x_1}(\overline{x_2}+\overline{x_3}) + \overline{x_2}.\overline{x_3}, &  \\
 & \qquad \overline{x_3}(\overline{x_1}+x_2) + \overline{x_1}x_2)  &  26   \\
 \hline
 & \qquad \overline{x_3}(\overline{x_1}+x_2) + \overline{x_1}x_2)  &  26   \\
 \hline
-f^c  &  (\overline{x_1}(x_2+x_3) + x_2x_3,\overline{x_1}(\overline{x_2}+\overline{x_3}) + \overline{x_2}\overline{x_3}, & \\
+f^c  &  (\overline{x_1}(x_2+x_3) + x_2x_3,\overline{x_1}(\overline{x_2}+\overline{x_3}) + \overline{x_2}.\overline{x_3}, & \\
 & \overline{x_3}(\overline{x_1}+x_2) + \overline{x_1}x_2)  &  29   \\
 \hline
 f^d  &  (x_1\oplus x_2,x_3(\overline{x_1}+\overline{x_2}),\overline{x_3})  &  30   \\
 & \overline{x_3}(\overline{x_1}+x_2) + \overline{x_1}x_2)  &  29   \\
 \hline
 f^d  &  (x_1\oplus x_2,x_3(\overline{x_1}+\overline{x_2}),\overline{x_3})  &  30   \\
@@ -156,7 +156,8 @@ Cependant, le graphe $\textsc{giu}(f^*)$
 (donné à la Figure~\ref{fig:iteration:f*})
 est le $3$-cube dans lequel le cycle 
 $000,100,101,001,011,111,110,010,000$ 
 (donné à la Figure~\ref{fig:iteration:f*})
 est le $3$-cube dans lequel le cycle 
 $000,100,101,001,011,111,110,010,000$ 
-a été enlevé.
+a été enlevé. Dans cette figure, le le graphe $\textsc{giu}(f)$ est
+en continu tandis que le cycle est en pointillés.
 Ce cycle qui visite chaque n{\oe}ud exactement une fois est un  
 \emph{cycle hamiltonien}.
 La matrice de Markov correspondante est donnée à 
 Ce cycle qui visite chaque n{\oe}ud exactement une fois est un  
 \emph{cycle hamiltonien}.
 La matrice de Markov correspondante est donnée à 
@@ -173,7 +174,7 @@ On s'intéresse  par la suite à la génération de ce genre de cycles.
     \label{fig:iteration:f*}]{
       \begin{minipage}{0.55\linewidth}
         \centering
     \label{fig:iteration:f*}]{
       \begin{minipage}{0.55\linewidth}
         \centering
-        \includegraphics[width=\columnwidth]{images/iter_f0c}%
+        \includegraphics[width=\columnwidth]{images/iter_f0d}%
       \end{minipage}
     }%
     \subfigure[Matrice de Markov associée à $\textsc{giu}(f^*)$
       \end{minipage}
     }%
     \subfigure[Matrice de Markov associée à $\textsc{giu}(f^*)$
@@ -181,32 +182,53 @@ On s'intéresse  par la suite à la génération de ce genre de cycles.
       \begin{minipage}{0.35\linewidth}
         \begin{scriptsize}
           \begin{center}
       \begin{minipage}{0.35\linewidth}
         \begin{scriptsize}
           \begin{center}
-            $ \dfrac{1}{4} \left(
-              \begin{array}{cccccccc}
-                1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+
+\[
+M=\dfrac{1}{3} \left(
+\begin{array}{llllllll}
+1&1&1&0&0&0&0&0 \\
+1&1&0&0&0&1&0&0 \\
+0&0&1&1&0&0&1&0 \\
+0&1&1&1&0&0&0&0 \\
+1&0&0&0&1&0&1&0 \\
+0&0&0&0&1&1&0&1 \\
+0&0&0&0&1&0&1&1 \\
+0&0&0&1&0&1&0&1 
+\end{array}
+\right)
+\]
+
+
+
+            % $ \dfrac{1}{4} \left(
+            %   \begin{array}{cccccccc}
+            %     1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
               
               
-                1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
+                1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
               
               
-                0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
+                0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
               
               
-                1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+                1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
               
               
-                1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
+                1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
               
               
-                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
+                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
               
               
-                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
+                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
               
               
-                0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
+                0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
               
               
-              \end{array}            \right) $
+            %   \end{array}            \right) $
+
+
+
           \end{center}
         \end{scriptsize}
       \end{minipage}
     }%
     \caption{Représentations de $f^*(x_1,x_2,x_3)=
           \end{center}
         \end{scriptsize}
       \end{minipage}
     }%
     \caption{Représentations de $f^*(x_1,x_2,x_3)=
-      (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
-      \overline{x_1}\overline{x_3} + x_1x_2)$.}\label{fig1}
+      (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
+      \overline{x_1}.\overline{x_3} + x_1x_2)$.}\label{fig1}
   \end{center}
 \end{figure}
 
   \end{center}
 \end{figure}
 
@@ -216,7 +238,7 @@ On s'intéresse  par la suite à la génération de ce genre de cycles.
 \section{Graphes 
   $\textsc{giu}(f)$ 
   $\textsc{gig}(f)$ 
 \section{Graphes 
   $\textsc{giu}(f)$ 
   $\textsc{gig}(f)$ 
-  fortement connexes et doublement stochastiques}
+  fortement connexes et doublement stochastiques}\label{sec:gen:dblstc}
 % Secrypt 14
 
 
 % Secrypt 14
 
 
@@ -292,8 +314,8 @@ depuis n'importe quel n{\oe}ud. Le graphe des itérations $\textsf{giu}$ qui
 
 
 
 
 
 
-Les preuves, relativement directes, sont  laissées en exercices au lecteur.  Par
-contre, ce qui  est moins aisé est la génération de  cycles hamiltoniens dans le
+%Les preuves, relativement directes, sont  laissées en exercices au lecteur.  
+La génération de  cycles hamiltoniens dans le
 $n$-cube,  ce qui  revient à  trouver des  \emph{codes de  Gray  cycliques}.  On
 rappelle que  les codes de  Gray sont des  séquences de mots binaires  de taille
 fixe ($n$),  dont les éléments successifs ne  différent que par un  seul bit. Un
 $n$-cube,  ce qui  revient à  trouver des  \emph{codes de  Gray  cycliques}.  On
 rappelle que  les codes de  Gray sont des  séquences de mots binaires  de taille
 fixe ($n$),  dont les éléments successifs ne  différent que par un  seul bit. Un
@@ -379,18 +401,460 @@ pouvant être produits.  Les  cas 7 et 8 ne sont que  des bornes minimales basé
 sur des sous-ensembles des partitionnements possibles.
 
 \begin{table}[ht]
 sur des sous-ensembles des partitionnements possibles.
 
 \begin{table}[ht]
-  %\begin{center}
+  \begin{center}
     \begin{tabular}{|l|c|c|c|c|c|}
       \hline
       $n$              & 4 & 5 & 6    & 7      & 8      \\
       \hline
     \begin{tabular}{|l|c|c|c|c|c|}
       \hline
       $n$              & 4 & 5 & 6    & 7      & 8      \\
       \hline
-      nb. de fonctions & 1 & 2 & 1332 & > 2300 & > 4500 \\
+      nb. de fonctions & 1 & 2 & 1332 & $>$ 2300 & $>$ 4500 \\
       \hline
     \end{tabular}
       \hline
     \end{tabular}
-  %\end{center}
-\caption{Nombre de générateurs selon le nombre de bits.}\label{table:nbFunc}
+  \end{center}
+\caption{Nombre de codes de Gray équilibrés selon le nombre de bits.}\label{table:nbFunc}
 \end{table}
 
 
 \end{table}
 
 
+Ces fonctions étant générée, on s'intéresse à étudier à quelle vitesse 
+un générateur les embarquant converge vers la distribution uniforme.
+C'est l'objectif de la section suivante. 
+
 \section{Quantifier l'écart par rapport à la distribution uniforme} 
 \section{Quantifier l'écart par rapport à la distribution uniforme} 
-%15 Rairo
\ No newline at end of file
+On considère ici une fonction construite comme à la section précédente.
+On s'intéresse ici à étudier de manière théorique les 
+itérations définies à l'équation~(\ref{eq:asyn}) pour une 
+stratégie donnée.
+Tout d'abord, celles-ci peuvent être interprétées comme une marche le long d'un 
+graphe d'itérations $\textsc{giu}(f)$ tel que le choix de tel ou tel arc est donné par la 
+stratégie.
+On remarque que ce graphe d'itération est toujours un sous graphe 
+du   ${\mathsf{N}}$-cube augmenté des 
+boucles sur chaque sommet, \textit{i.e.}, les arcs
+$(v,v)$ pour chaque $v \in \Bool^{\mathsf{N}}$. 
+Ainsi, le travail ci dessous répond à la question de 
+définir la longueur du chemin minimum dans ce graphe pour 
+obtenir une distribution uniforme.
+Ceci se base sur la théorie des chaînes de Markov.
+Pour une référence 
+générale à ce sujet on pourra se référer 
+au livre~\cite{LevinPeresWilmer2006},
+particulièrement au chapitre sur les temps d'arrêt.
+
+
+
+
+\begin{xpl}
+On considère par exemple le graphe $\textsc{giu}(f)$ donné à la 
+\textsc{Figure~\ref{fig:iteration:f*}.} et la fonction de 
+probabilités $p$ définie sur l'ensemble des arcs comme suit:
+$$
+p(e) \left\{
+\begin{array}{ll}
+= \frac{2}{3} \textrm{ si $e=(v,v)$ avec $v \in \Bool^3$,}\\
+= \frac{1}{6} \textrm{ sinon.}
+\end{array}
+\right.  
+$$
+La matrice $P$ de la chaîne de Markov associée à  $f^*$ 
+est  
+\[
+P=\dfrac{1}{6} \left(
+\begin{array}{llllllll}
+4&1&1&0&0&0&0&0 \\
+1&4&0&0&0&1&0&0 \\
+0&0&4&1&0&0&1&0 \\
+0&1&1&4&0&0&0&0 \\
+1&0&0&0&4&0&1&0 \\
+0&0&0&0&1&4&0&1 \\
+0&0&0&0&1&0&4&1 \\
+0&0&0&1&0&1&0&4 
+\end{array}
+\right)
+\]
+\end{xpl}
+
+
+
+
+Tout d'abord, soit $\pi$ et $\mu$ deux distributions sur 
+$\Bool^{\mathsf{N}}$. 
+La distance de \og totale variation\fg{} entre  $\pi$ et $\mu$ 
+est notée  $\tv{\pi-\mu}$ et est définie par 
+$$\tv{\pi-\mu}=\max_{A\subset \Bool^{\mathsf{N}}} |\pi(A)-\mu(A)|.$$ 
+On sait que 
+$$\tv{\pi-\mu}=\frac{1}{2}\sum_{X\in\Bool^{\mathsf{N}}}|\pi(X)-\mu(X)|.$$
+De plus, si 
+$\nu$ est une distribution on $\Bool^{\mathsf{N}}$, on a 
+$$\tv{\pi-\mu}\leq \tv{\pi-\nu}+\tv{\nu-\mu}.$$
+
+Soit $P$ une matrice d'une chaîne de Markov sur $\Bool^{\mathsf{N}}$. 
+$P(X,\cdot)$ est la distribution induite par la  $X^{\textrm{ème}}$ colonne
+de  $P$. 
+Si la chaîne de  Markov induite par 
+$P$ a une  distribution stationnaire $\pi$, on définit alors 
+$$d(t)=\max_{X\in\Bool^{\mathsf{N}}}\tv{P^t(X,\cdot)-\pi}$$
+
+et
+
+$$t_{\rm mix}(\varepsilon)=\min\{t \mid d(t)\leq \varepsilon\}.$$
+
+Un résultat classique est
+
+$$t_{\rm mix}(\varepsilon)\leq \lceil\log_2(\varepsilon^{-1})\rceil t_{\rm mix}(\frac{1}{4})$$
+
+
+
+
+Soit $(X_t)_{t\in \mathbb{N}}$ une suite de  variables aléatoires de 
+$\Bool^{\mathsf{N}}$.
+une variable aléatoire $\tau$ dans $\mathbb{N}$ est un  
+\emph{temps d'arrêt} pour la suite
+$(X_i)$ si pour chaque $t$ il existe $B_t\subseteq
+(\Bool^{\mathsf{N}})^{t+1}$ tel que 
+$\{\tau=t\}=\{(X_0,X_1,\ldots,X_t)\in B_t\}$. 
+En d'autres termes, l'événement $\{\tau = t \}$ dépend uniquement des valeurs 
+de  
+$(X_0,X_1,\ldots,X_t)$, et non de celles de $X_k$ pour $k > t$. 
+
+Soit $(X_t)_{t\in \mathbb{N}}$ une chaîne de Markov et 
+$f(X_{t-1},Z_t)$  une représentation fonctionnelle de celle-ci. 
+Un \emph{temps d'arrêt aléatoire} pour la chaîne de 
+Markov  est un temps d'arrêt pour 
+$(Z_t)_{t\in\mathbb{N}}$.
+Si la chaîne de Markov  est irréductible et a $\pi$
+comme distribution stationnaire, alors un 
+\emph{temps stationnaire} $\tau$ est temps d'arrêt aléatoire
+(qui peut dépendre de la configuration initiale $X$),
+tel que la distribution de $X_\tau$ est $\pi$:
+$$\P_X(X_\tau=Y)=\pi(Y).$$
+
+
+Un temps d'arrêt  $\tau$ est qualifié de  \emph{fort} si  $X_{\tau}$ 
+est indépendant de  $\tau$.  On a les deux théorèmes suivants, dont les 
+démonstrations sont données en annexes~\ref{anx:generateur}.
+
+
+\begin{theorem}
+Si $\tau$ est un temps d'arrêt fort, alors $d(t)\leq \max_{X\in\Bool^{\mathsf{N}}}
+\P_X(\tau > t)$.
+\end{theorem}
+
+\begin{theorem} \label{prop:stop}
+If $\ov{h}$ is bijective et telle que if for every $X\in \Bool^{\mathsf{N}}$,
+$\ov{h}(\ov{h}(X))\neq X$, alors
+$E[\ts]\leq 8{\mathsf{N}}^2+ 4{\mathsf{N}}\ln ({\mathsf{N}}+1)$. 
+\end{theorem}
+
+Sans entrer dans les détails de la preuve, on remarque tout d'abord 
+que le calcul 
+de cette borne n'intègre pas le fait qu'on préfère enlever des 
+chemins hamiltoniens équilibrés. 
+En intégrant cette contrainte, la borne supérieure pourrait être réduite.
+
+On remarque ensuite que la chaîne de Markov proposée ne suit pas exactement
+l'algorithme~\ref{CI Algorithm}. En effet dans la section présente, 
+la probabilité de rester dans une configuration donnée 
+est fixée à $frac{1}{2}+\frac{1}{2n}$.
+Dans l'algorithme initial, celle-ci est de ${1}{n}$.
+Cette version, qui reste davantage sur place que l'algorithme original,
+a été introduite pour simplifier le calcul de la borne sup 
+du temps d'arrêt.   
+
+
+
+
+\section{Et les itérations généralisées?}
+Le chaptire précédent a présenté un algorithme de 
+PRNG construit à partir d'itérations unaires. 
+On pourrait penser que cet algorithme est peu efficace puisqu'il 
+dispose d'une fonction $f$ de $\Bool^n$ dans lui même mais il ne modifie à 
+chaque itération qu'un seul élément de $[n]$.
+On pourrait penser à un algorithme basé sur les itérations généralisées, 
+c'est-à-dire qui modifierait une partie des éléments de $[n]$ à chaque 
+itération.
+C'est l'algorithme~\ref{CI Algorithm:prng:g}.
+
+\begin{algorithm}[ht]
+%\begin{scriptsize}
+\KwIn{une fonction $f$, un nombre d'itérations $b$, 
+une configuration initiale $x^0$ ($n$ bits)}
+\KwOut{une configuration $x$ ($n$ bits)}
+$x\leftarrow x^0$\;
+$k\leftarrow b $\;
+\For{$i=1,\dots,k$}
+{
+$s\leftarrow{\textit{Set}(\textit{Random}(2^n))}$\;
+$x\leftarrow{F_{f_g}(s,x)}$\;
+}
+return $x$\;
+%\end{scriptsize}
+\caption{PRNG basé sur les itérations généralisées.}
+\label{CI Algorithm:prng:g}
+\end{algorithm}
+
+Par rapport à l'algorithme~\ref{CI Algorithm} seule 
+la ligne $s\leftarrow{\textit{Set}(\textit{Random}(2^n))}$ est différente.
+Dans celle-ci la fonction  $\textit{Set}   :    \{1,\ldots,2^n\}   \rightarrow
+\mathcal{P}(\{1,\ldots   n\})$   retourne  l'ensemble   dont   la   fonction
+caractéristique  serait  représentée par  le  nombre  donné  en argument.
+Par exemple, pour $n=3$, l'ensemble $\textit{Set}(6)$ vaudraitt $\{3,2\}$.
+On remarque aussi que l'argument de la fonction  $\textit{Random}$
+passe de $n$ à $2^n$.
+
+On a le théorème suivant qui étend le théorème~\ref{thm:prng:u} aux itérations
+généralisées.
+
+\begin{theorem}\label{thm:prng:g}
+  Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{gig}(f)$ son 
+  graphe des itérations généralisées, $\check{M}$ la matrice d'adjacence
+  correspondante à ce graphe 
+  et $M$ une matrice  $2^n\times 2^n$  
+  définie par 
+  $M = \dfrac{1}{n} \check{M}$.
+  Si $\textsc{gig}(f)$ est fortement connexe, alors 
+  la sortie du générateur de nombres pseudo aléatoires détaillé par 
+  l'algorithme~\ref{CI Algorithm} suit une loi qui 
+  tend vers la distribution uniforme si 
+  et seulement si  $M$ est une matrice doublement stochastique.
+\end{theorem}
+
+La preuve de ce théorème est la même que celle du théorème~\ref{thm:prng:u}.
+Elle n'est donc pas rappelée.
+
+\begin{xpl}
+
+  On reprend l'exemple donné à la section~\ref{sub:prng:ana}:
+  Dans le $3$-cube   cycle hamiltonien défini par la séquence
+  $000,100,101,001,011,111,110,010,000$ a été supprimé engendrant 
+  la fonction $f^*$ définie par 
+  $$f^*(x_1,x_2,x_3)=
+  (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
+\overline{x_1}.\overline{x_3} + x_1x_2).
+$$ 
+
+Le graphe  $\textsc{gig}(f^*)$  est représenté à la 
+Figure~\ref{fig:iteration:f*}.
+La matrice de Markov $M$ correspondante est donnée à 
+la figure~\ref{fig:markov:f*}.
+
+\begin{figure}[ht]
+  \begin{center}
+    \subfigure[Graphe des itérations chaotiques de $f^*$.
+    \label{fig:iteration:f*}]{
+      \begin{minipage}{0.55\linewidth}
+        \centering
+        \includegraphics[width=\columnwidth]{images/iter_f}%
+      \end{minipage}
+    }%
+    \subfigure[Matrice de Markov du graphe d'itérations chaotiques de 
+    $f^*$\label{fig:markov:f*}]{%
+      \begin{minipage}{0.35\linewidth}
+        \begin{scriptsize}
+          \begin{center}
+            $ \dfrac{1}{4} \left(
+              \begin{array}{cccccccc}
+                1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+              
+                1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
+              
+                0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
+              
+                1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+              
+                1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
+              
+                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
+              
+                0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
+              
+                0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
+              
+              \end{array}            \right) $
+          \end{center}
+        \end{scriptsize}
+      \end{minipage}
+    }%
+    \caption{Représentations de $f^*(x_1,x_2,x_3)=
+      (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
+      \overline{x_1}\overline{x_3} + x_1x_2)$.}\label{fig1}
+  \end{center}
+\end{figure}
+\end{xpl}
+
+
+
+\begin{table}[ht]
+  \begin{center}
+    \begin{scriptsize}
+      \begin{tabular}{|c|l|c|c|}
+        \hline
+        fonction  & $f(x)$, $f(x)$ pour $x \in [0,1,2,\hdots,2^n-1]$                 & $b$ & $b'$ \\ 
+        \hline
+        $f^{*4}$  & [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8]                          & 17  & 38   \\
+        \hline
+        $f^{*5}$  & [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1,        & 13  & 48   \\
+                  & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4]     &     &      \\
+        \hline
+        $f^{*6}$  & [55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33,     & 11   & 55   \\
+                  & 49, 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1,     &     &      \\
+                  & 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22,      &     &      \\
+                  & 16, 24, 13, 12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32] &     &      \\
+         \hline
+         $f^{*7}$ & [111, 94, 93, 116, 122, 114, 125, 88, 87, 126, 119, 84, 123,     & 10   & 63   \\
+                  & 98, 81, 120, 109, 106, 105, 110, 99, 107, 104, 108, 101, 70,     &     &      \\ 
+                  & 117, 96, 67, 102, 113, 64, 79, 30, 95, 124, 83, 91, 121, 24,     &     &      \\ 
+                  & 23, 118, 69, 20, 115, 90, 17, 112, 77, 14, 73, 78, 74, 10, 72,   &     &      \\ 
+                  & 76, 103, 6, 71, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59,     &     &      \\ 
+                  & 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42,      &     &      \\ 
+                  & 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92,      &     &      \\ 
+                  & 26, 18, 89, 25, 19, 86, 85, 4, 27, 2, 16, 80, 31, 12, 15, 8,     &     &      \\ 
+                  & 3, 11, 13, 9, 5, 22, 21, 68, 7, 66, 65, 1]                       &     &      \\
+        \hline
+        $f^{*8}$  &[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180,&        9 & 72    \\
+                 & 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, &&\\
+                 & 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216, &&\\
+                 & 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209, &&\\
+                 & 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132, &&\\
+                 & 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191,&&\\
+                 & 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42, &&\\
+                 & 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141,&&\\
+                 & 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, &&\\
+                 & 145, 175, 206, 143, 136, 11, 142, 129, 8, 7, 198, 197, 4, 195, &&\\
+                 & 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, &&\\
+                 & 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120,&&\\
+                 & 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81,&&\\
+                 & 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, &&\\
+                 & 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45, 188, 51, 186, 61, &&\\
+                 & 40, 119, 182, 181, 53, 179, 54, 33, 49, 15, 174, 47, 60, 171, && \\
+                 & 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19,&&\\
+                 & 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, &&\\
+                 &138, 41, 12, 39, 134, 133, 5, 131, 34, 9, 128]&&\\
+        \hline
+      \end{tabular}
+    \end{scriptsize}
+  \end{center}
+\label{table:functions}\caption{Fonctions avec matrices DSCC et le plus faible temps de mélange.}
+\end{table}
+
+Le  tableau~\ref{table:functions} reprend  une synthèse de 
+fonctions qui  ont été  générées selon  la méthode détaillée  
+à la  section~\ref{sec:gen:dblstc}.
+Pour  chaque nombre $n=3$,  $4$, $5$
+,$6$, tous  les cycles  hamiltoniens non isomorphes  ont été générés.   Pour les
+valeur de $n=7$ et $8$,  seules $10^{5}$ configurations ont été évaluées.  Parmi
+toutes  les fonctions  obtenues en  enlevant du  $n$-cube ces  cycles,  n'ont été
+retenues que celles  qui minimisaient le temps de mélange relatif  à une valeur de
+$\epsilon$ fixée à $10^{-8}$.  
+Ce  nombre d'itérations (\textit{i.e.}, ce temps de mélange) 
+est stocké dans la troisième
+colonne sous la variable $b$.  
+La variable $b'$ reprend le temps de mélange pour
+l'algorithme~\ref{CI Algorithm}.
+
+Un premier  résultat est  que ce nouvel  algorithme réduit grandement  le nombre
+d'itérations  suffisant pour  obtenir une  faible  déviation par  rapport à  une
+distribution uniforme.  On constate de  plus que ce nombre décroit avec
+le nombre d'éléments alors qu'il augmente dans l'approche initiale où 
+l'on marche.
+
+Cela s'explique assez simplement. Depuis une configuration initiale, le nombre 
+de configurations qu'on ne peut pas atteindre en une itération est de 
+\begin{itemize}
+\item $2^n-n$ en marchant, ce qui représente $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$ 
+  de toutes les configurations; plus $n$ est grand, 
+  plus ce nombre est proche de $1$, et plus grand devient le nombre 
+  d'itérations suffisantes pour atteinte une déviation faible;
+\item $2^n-2^{n-1}$ en sautant, soit la moitié de toutes les configurations 
+  quel que soit $n$; seul 1 bit reste constant tandis que tous les autres peuvent changer. Plus $n$ grandit, plus la proportion de bits constants diminue.
+\end{itemize}
+
+Cependant, dans le cas où l'on saute, chaque itération a une complexité 
+plus élevée puisqu'il est nécessaire d'invoquer un générateur 
+de nombres pseudo-aléatoires entre 1 et $2^{n}$ tandis qu'il suffit 
+d'avoir un générateur entre 1 et $n$ dans le premier cas.
+
+Pour comparer les deux approches, on considère que le générateur aléatoire embarqué est binaire, \textit{i.e.} ne génère qu'un bit (0 ou 1).
+
+Lorsqu'on marche et qu'on effectue $i$ itérations, 
+à chaque itération, la stratégie génère un nombre entre
+$1$ et $n$. 
+Elle fait donc $\ln(n)/\ln(2)$ appels à ce générateur en moyenne. 
+La démarche fait donc au total $i*\ln(n)/\ln(2)$ appels pour $n$ bits et
+donc $i*\ln(n)/(n*\ln(2))$ appels pour 1 bit généré en moyenne.
+Lorsqu'on saute et qu'on effectue $i'$ itérations, 
+à chaque itération, la stratégie génère un nombre entre
+$1$ et $2^n$. Elle fait donc $n$ appels à ce générateur.
+On fait donc au total $i'*n$ appels pour $n$ bits et
+donc $i'$ appels pour 1 bit généré en moyenne.
+Le tableau~\ref{table:marchevssaute} donne des instances de 
+ces valeurs pour $n \in\{4,5,6,7,8\}$ et les fonctions  
+données au tableau~\ref{table:functions}.
+On constate que le nombre d'appels par bit généré décroit avec $n$ dans la 
+seconde démarche et est toujours plus faible que celui de la première.   
+
+
+
+\begin{table}[ht]
+$$
+\begin{array}{|l|l|l|l|l|l|}
+\hline
+\textrm{Itérations} & 4 & 5 & 6 & 7 & 8 \\ 
+\hline
+\textrm{Unaires}         &  19.0 & 22.2905097109  & 23.6954895899 & 25.2661942985 & 27.0\\  
+\hline
+\textrm{Généralisées}          &  17   & 13             & 11            & 10 & 9\\
+\hline
+\end{array}
+$$
+\caption{Nombre moyen 
+  d'appels à un générateurs binaire par bit généré}\label{table:marchevssaute}
+\end{table}
+
+
+
+
+La qualité des séquences aléatoires a été évaluée à travers la suite 
+de tests statistiques développée pour les générateurs de nombres 
+pseudo-aléatoires par le 
+\emph{National Institute of Standards and Technology} (NIST).
+ Pour les 15 tests, le seuil $\alpha$ est fixé à $1\%$:
+ une  valeur  
+ qui est plus grande que $1\%$  signifie 
+ que la chaîne est considérée comme aléatoire avec une confiance de $99\%$.
+ Le tableau~\ref{fig:TEST} donne une vision synthétique de toutes 
+ ces expérimentations. 
+L'expérience a montré notamment que toutes ces fonctions
+passent avec succès cette batterie de tests. 
+
+%%%%%%%%% Relancer pour n=6, n=7, n=8
+%%%%%%%%% Recalculer le MT
+%%%%%%%%% Regenerer les 10^6 bits
+%%%%%%%%% Evaluer sur NIST
+\begin{table}[ht]
+  \centering
+  \begin{scriptsize}
+    \begin{tabular}{|*{5}{c|}}
+      \hline
+Test                          & $f^{*4}$      & $f^{*5}$      & $f^{*6}$      & $f^{*7}$      \\ \hline
+Fréquence (Monobit)           & 0.025 (0.99)  & 0.066 (1.0)   & 0.319 (0.99)  & 0.001 (1.0)   \\ \hline  
+Fréquence / bloc              & 0.401 (0.99)  & 0.867 (1.0)   & 0.045 (0.99)  & 0.085 (0.99)  \\ \hline
+Somme Cumulé*                 & 0.219 (0.995) & 0.633 (1.0)   & 0.635 (1.0)   & 0.386 (0.99)  \\ \hline 
+Exécution                     & 0.964 (0.98)  & 0.699 (0.99)  & 0.181 (0.99)  & 0.911 (0.98)  \\ \hline 
+Longue exécution dans un bloc & 0.137 (0.99)  & 0.964 (1.0)   & 0.145 (0.99)  & 0.162 (0.98)  \\ \hline 
+Rang                          & 0.616 (0.99)  & 0.678 (1.0)   & 0.004 (1.0)   & 0.816 (1.0)   \\ \hline 
+Fourier rapide                & 0.048 (0.99)  & 0.637 (0.97)  & 0.366 (0.99)  & 0.162 (0.99)  \\ \hline 
+Patron sans superposition*    & 0.479 (0.988) & 0.465 (0.989) & 0.535 (0.989) & 0.499 (0.989) \\ \hline 
+Patron avec superposition     & 0.897 (1.0)   & 0.657 (0.97)  & 0.897 (0.98)  & 0.236 (0.99)  \\ \hline 
+Statistiques universelles     & 0.991 (0.98)  & 0.657 (0.98)  & 0.102 (0.98)  & 0.719 (0.98)  \\ \hline 
+Entropie approchée (m=10)     & 0.455 (1.0)   & 0.964 (1.0)   & 0.162 (1.0)   & 0.897 (0.98)  \\ \hline 
+Suite aléatoire *             & 0.372 (0.993) & 0.494 (0.986) & 0.243 (0.992) & 0.258 (0.993) \\ \hline 
+Suite aléatoire variante *    & 0.496 (0.989) & 0.498 (0.992) & 0.308 (0.983) & 0.310 (0.999) \\ \hline 
+Série* (m=10)                 & 0.595 (0.995) & 0.289 (0.975) & 0.660 (0.995) & 0.544 (0.99)  \\ \hline 
+Complexité linaire            & 0.816 (1.0)   & 0.897 (0.98)  & 0.080 (0.98)  & 0.798 (1.0)   \\ \hline
+    \end{tabular}
+  \end{scriptsize}
+\label{fig:TEST}\caption{Test de NIST réalisé sur les fonctions $f^*$ détaillées au tableau~\label{table:functions}}
+\end{table}
+
+%