]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fin relecture sylvaine
[hdrcouchot.git] / main.tex
index 217f8f45225f2a5390897653d4af50e9a69b310f..254a34b40f2bb06265694bc01b42810cae1c22ad 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -36,7 +36,7 @@
 
 %%--------------------
 %% Title of the document
 
 %%--------------------
 %% Title of the document
-\declarehdr{Title}{XX Mois XXXX}
+\declarehdr{Modèles discrets pour la sécurité informatique: des méthodes itératives à l'analyse vectorielle}{XX Mois XXXX}
  
 %%--------------------
 %% Set the author of the HDR
  
 %%--------------------
 %% Set the author of the HDR
 
 %%--------------------
 %% Set the University where HDR was made
 
 %%--------------------
 %% Set the University where HDR was made
-\hdrpreparedin{Université de Technologie de Belfort-Montbéliard}
+\hdrpreparedin{l'Université de Franche-Comté}
+
  
 %%--------------------
 %% Set the English abstract
  
 %%--------------------
 %% Set the English abstract
-%\hdrabstract[english]{This is the abstract in English}
+\hdrabstract[english]{
+éThanks to its  conciseness, a discrete model may allow  to reason with
+problems  that may  not be  handled  without such  a formalism.   Discrete
+dynamical systems  (DDS) belong to this  computer science area.   In this
+authorization  to direct  researches  manuscript,  we firstly  present
+contributions on  convergence, convergence proof, and  a new iteration
+scheme  of  such  systems.   We further  present  contributions  about
+functions whose iterations  can be chaotic. We  particularly present a
+set of methods leading to such  functions. One of them built over Gray
+codes allows to obtain a Markov chain that is doubly stochastic.  This
+last method permits to produce  a large number of Pseudo-random Number
+Generators  (PRNG).   Theoretical  and  practical   contributions  are
+presented   in  this   field.   Information   hiding  area   has  been
+strengthened  in  this  manuscript  and some  contributions  are  thus
+presented.  Instances  of  such  algorithms  are  given  according  to
+functions  that can  achieve  a large  robustness.   Finally, we  have
+proposed an new method to  build distortion functions
+that can be embedded  in information hiding schemes  
+with analysis gradient but  expressed in a
+discrete way.}
  
 %%--------------------
 %% Set the English keywords. They only appear if
 %% there is an English abstract
  
 %%--------------------
 %% Set the English keywords. They only appear if
 %% there is an English abstract
-%\hdrkeywords[english]{Keyword 1, Keyword 2}
+\hdrkeywords[english]{discrete dynamical systems, pseudo random number 
+generators, information hiding.}
  
 %%--------------------
 %% Set the French abstract
  
 %%--------------------
 %% Set the French abstract
-\hdrabstract[french]{Blabla blabla.}
+\hdrabstract[french]{
+Grâce à  leur concision,  les modèle discrets  permettent d'appréhender
+des  problèmes informatiques  qui ne  seraient parfois  pas traitables
+autrement.  Les systèmes  dynamiques  discrets  (SDD) s'intègrent  dans
+cette  thématique.  Dans  cette habilitation,  nous présenterons  tout
+d'abord  des contributions  concernant  la convergence,  la preuve  de
+convergence  et un  nouveau mode  opératoire de  tels systèmes.   Nous
+présenterons  ensuite   un  ensemble  de  contributions   autour  des
+fonctions       dont      les       itérations      peuvent       être
+chaotiques.  Particulièrement, nous  présentons  plusieurs méthodes
+permettant d'obtenir de telles fonctions, dont une basée sur les codes
+de Gray, permettant d'obtenir en  plus une chaîne de Markov doublement
+stochastique.   Cette   dernière  méthode  nous  a   permis  notamment
+d'obtenir   une    grande   famille    de   générateurs    de   nombres
+pseudo-aléatoires  (PRNG). Des  contributions théoriques  et pratiques
+autour de  ces PRNGs  seront présentées.   La thématique  de masquage
+d'information (déjà présente dans l'équipe)
+a été renforcée et des contributions sur
+ce  sujet seront  présentées. Des  instances de  ces algorithmes  sont
+formalisés en  sélectionnant les  fonctions à  itérer pour  garantir une
+robustesse  élevée.  Finalement,  nous  montrons qu'on peut construire 
+de nouvelles fonctions de distorsion utilisables
+en masquage d'information à l'aide de 
+méthodes d'analyse par gradient mais discret cette fois encore.
+
+
+}
  
 %%--------------------
 %% Set the French keywords. They only appear if
 %% there is an French abstract
  
 %%--------------------
 %% Set the French keywords. They only appear if
 %% there is an French abstract
-%\hdrkeywords[french]{Mot-cl\'e 1, Mot-cl\'e 2}
+\hdrkeywords[french]{systèmes dynamiques discrets, générateurs de nombres
+pseudo aléatoires, masquage d'information.}
 
 %%--------------------
 %% Change the layout and the style of the text of the "primary" abstract.
 
 %%--------------------
 %% Change the layout and the style of the text of the "primary" abstract.
 
 %%--------------------
 %% Change the speciality of the PhD thesis
 
 %%--------------------
 %% Change the speciality of the PhD thesis
-%\Set{speciality}{Informatique}
+\Set{speciality}{Informatique}
  
 %%--------------------
 %% Change the institution
  
 %%--------------------
 %% Change the institution
 \newtheorem{lemma}{Lemme}
 \newtheorem{corollary}{Corollaire}
 \newtheorem*{xpl}{Exemple}
 \newtheorem{lemma}{Lemme}
 \newtheorem{corollary}{Corollaire}
 \newtheorem*{xpl}{Exemple}
-\newtheorem*{Proof}{Preuve}
+
 \newtheorem{Def}{Définition}
 
 \begin{document}
 
  
 
 \newtheorem{Def}{Définition}
 
 \begin{document}
 
  
 
-
+\tableofcontents
 
 \chapter*{Introduction}
 
 
 \chapter*{Introduction}
 
-Blabla blabla.
+\input{intro}
 
 \mainmatter
 
 
 \mainmatter
 
-\part{Réseaux Discrets}
+\part{Réseaux discrets}
+
+\chapter{Iterations discrètes de réseaux booléens}\label{chap:sdd}
+
+Ce chapitre formalise tout d'abord ce qu'est 
+un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit 
+les différents modes opératoires, leur représentation à l'aide de 
+graphes et les résultats connus de convergence).
+Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
+comment combiner ces modes pour converger aussi 
+souvent, mais plus rapidement vers un point fixe. Les deux 
+dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
 
 
-\chapter{Iterations discrètes de réseaux booléens}
-\JFC{chapeau à refaire}
-\section{Formalisation}
+\section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
 \input{sdd}
 
-\section{Combinaisons synchrones et asynchrones}
+\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage}
 \input{mixage}
 
 \section{Conclusion}
 \input{mixage}
 
 \section{Conclusion}
-\JFC{Conclusion à refaire}
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, nous avons exposé comment construire un mode combinant les
-avantage du synchronisme en terme de convergence avec les avantages 
+Dans ce chapitre, après avoir introduit les bases sur les réseaux booléens,
+nous avons exposé comment construire un mode combinant les
+avantages du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
 
 de l'asynchronisme en terme de vitesse de convergence.
 
 
@@ -205,16 +262,24 @@ de l'asynchronisme en terme de vitesse de convergence.
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
-\chapter[Caracterisation des systèmes 
-  discrets chaotiques]{Caracterisation des systèmes 
+\chapter[Caractérisation des systèmes 
+  discrets chaotiques]{Caractérisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
-La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
-Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
-généralisée (TSI).  Pour chacune d'elle, 
-on introduit une distance différente.
+La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
+convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
+La première section  de ce chapitre rappelle ce que sont les systèmes 
+dynamiques chaotiques et leurs caractéristiques.
+La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10},
+se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se 
+suffisant à lui-même.
+La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, 
+une métrique est définie. Finalement, la section~\ref{sec:11FCT}
+exhibe des conditions suffisantes permettant d'engendrer 
+des fonctions chaotiques selon le mode unaire.
+Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
+dans~\cite{bcg11:ij,bcgr11:ip}.
 
 
-On montre qu'on a des résultats similaires.
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
@@ -223,14 +288,24 @@ On montre qu'on a des résultats similaires.
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
-\section{Schéma généralisé}
+\section{Schéma généralisé}\label{sec:chaos:TSI}
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
-\chapter{Prédiction des systèmes chaotiques}
+\section{Conclusion}
+Ce chapitre a montré que les itérations unaires sont chaotiques si
+et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
+que les itérations généralisées sont chaotiques si
+et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
+On dispose ainsi a priori d'une collection infinie de fonctions chaotiques.
+Le chapitre suivant s'intéresse à essayer de prédire le comportement 
+de telles fonctions. 
+
+
+\chapter{Prédiction des systèmes chaotiques}\label{chp:ANN}
 \input{chaosANN}
 
 
 \input{chaosANN}
 
 
@@ -238,86 +313,48 @@ On montre qu'on a des résultats similaires.
 
 \part{Applications à la génération de nombres pseudo aléatoires}
 
 
 \part{Applications à la génération de nombres pseudo aléatoires}
 
-\chapter{Caractérisation des générateurs chaotiques}
+\chapter{Caractérisation des générateurs chaotiques}\label{chap:PRNG:chao}
 \input{15RairoGen}
 
 \input{15RairoGen}
 
-\chapter{Les générateurs issus des codes de Gray}
+\chapter{Les générateurs issus des codes de Gray}\label{chap:PRNG:gray}
 \input{14Secrypt}
 
 
 
 \input{14Secrypt}
 
 
 
-\part{Application au marquage de média}
+\part{Application au masquage d'information}
 
 
 
 
-\chapter{Des embarquement préservant le chaos}\label{chap:watermarking} 
-% OXFORD
+\chapter{Des embarquements préservant le chaos}\label {chap:watermarking} 
 \input{oxford}
 
 \input{oxford}
 
-\chapter{Une démarche de  marquage de PDF}
+\chapter{Une démarche de  marquage de PDF}\label{chap:watermarking:pdf}
 \input{ahmad}
 
 \input{ahmad}
 
-
-\chapter{Une démarches plus classique de dissimulation: STABYLO}
+\chapter[STABYLO] {Une démarche plus classique de dissimulation: STABYLO}\label{chap:stabylo}
  \input{stabylo}
 
  \input{stabylo}
 
-\chapter{Schéma de stéganographie: les dérivées du second ordre}
+\chapter[Stéganographie par dérivées secondes]{Schémas de stéganographie: les dérivées secondes}\label{chap:th:yousra}
  \input{stegoyousra}
 
 
 
  \input{stegoyousra}
 
 
 
-\part{Conclusion et Perspectives}
+\part*{Conclusion et Perspectives}
 
 
+\input{conclusion}
 
 
 
 
 
 
-\JFC{Perspectives pour SDD->Promela}
-Among drawbacks of the method,  one can argue that bounded delays is only 
-realistic in practice for close systems. 
-However, in real large scale distributed systems where bandwidth is weak, 
-this restriction is too strong. In that case, one should only consider that 
-matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
-for all $i$, $j$, $1 \le i \le j \le n$,  we have$
-\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
-One challenge of this work should consist in weakening this constraint. 
-We plan as future work to take into account other automatic approaches 
-to discharge proofs notably by deductive analysis~\cite{CGK05}. 
 
 
-\JFC{Perspective ANN}
 
 
-In  future  work we  intend  to  enlarge  the comparison  between  the
-learning   of  truly   chaotic  and   non-chaotic   behaviors.   Other
-computational intelligence tools such  as support vector machines will
-be investigated  too, to  discover which tools  are the  most relevant
-when facing a truly chaotic phenomenon.  A comparison between learning
-rate  success  and  prediction  quality will  be  realized.   Concrete
-consequences in biology, physics, and computer science security fields
-will then be stated.
-Ajouter lefait que le codede gray n'est pas optimal.
-On pourrait aussi travailler à établir un classement qui préserverait 
-le fait que deux configurations voisines seraient représentées 
-par deux entiers voisins. Par optimisation? 
-\JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on 
-pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
 
 
 
 
-\JFC{prespectives watermarking : réécrire l'algo nicolas dans le formalisme
-du chapitre 8}
-
-% TSI 2015 
-
-
-
-% \chapter{Conclusion}
-
-% Blabla blabla.
 
 
 \appendix
 
 
 
 \appendix
 
-\chapter{Preuves sur les SDD}
+\chapter{Preuves sur les réseaux discrets}
 
 
-\section{Convergence du mode mixe}\label{anx:mix}
+\section{Convergence du mode mixte}\label{anx:mix}
 \input{annexePreuveMixage}
 
 
 \input{annexePreuveMixage}
 
 
@@ -330,13 +367,12 @@ du chapitre 8}
 \chapter{Preuves sur les systèmes chaotiques}
 
 
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
-\input{annexecontinuite.tex}
+%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
+%\input{annexecontinuite.tex}
 
 
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
-\input{caracunaire.tex}
-
+%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
+%\input{caracunaire.tex}
 
 \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
 
 \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
@@ -346,17 +382,21 @@ du chapitre 8}
 \input{caracgeneralise.tex}
 
 
 \input{caracgeneralise.tex}
 
 
-\section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
+\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}}
 \input{annexesccg}
 
 
 \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
 \input{annexePreuveDistribution}
 \input{annexesccg}
 
 
 \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
 \input{annexePreuveDistribution}
+
+\section{Codes de Gray équilibrés par induction}
 \input{annexePreuveGrayEquilibre}
 \input{annexePreuveGrayEquilibre}
+
+\section{Majoration du temps de mixage}
 \input{annexePreuveStopping}
 
 \chapter{Preuves sur le marquage de média}\label{anx:marquage}
 \input{annexePreuveStopping}
 
 \chapter{Preuves sur le marquage de média}\label{anx:marquage}
-\section{Le marquage est $\epsilon$-sego-secure}
+\section{Le marquage est $\epsilon$-stégo-sécure}
 \input{annexePreuveMarquagedhci}
 
 \section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
 \input{annexePreuveMarquagedhci}
 
 \section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
@@ -364,19 +404,18 @@ du chapitre 8}
 
 \section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue}
 \input{annexePreuveMarquageCorrectioncompletude}
 
 \section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue}
 \input{annexePreuveMarquageCorrectioncompletude}
-\backmatter
 
 
-\section{Complexité d'Algorithmes de stéganographie}
-\label{anx:preuve:cplxt}
-\input{annexePreuvesComplexiteStego}
+% \section{Complexités d'algorithmes de stéganographie}
+\label{anx:preuve:cplxt}
+\input{annexePreuvesComplexiteStego}
 
 
 
 
 
 
-\bibliographystyle{apalike}
+\bibliographystyle{alpha}
 \bibliography{abbrev,biblioand}
 \listoffigures
 \listoftables
 \bibliography{abbrev,biblioand}
 \listoffigures
 \listoftables
-\listofdefinitions
+
  
 \end{document}
 
  
 \end{document}