]> AND Private Git Repository - hdrcouchot.git/blobdiff - 14Secrypt.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de quelques tex
[hdrcouchot.git] / 14Secrypt.tex
index 5e4cafc4272a23dbcf3348975b5b5cec818ea973..b499f1b1975fcc6b7e925e6a21ca9d535721fe8c 100644 (file)
@@ -20,10 +20,11 @@ une distribution uniforme est étudiée théoriquement et pratiquement à la
 section~\ref{sec:mixing}.
 L'extension du travail aux itérations généralisées est présentée à la 
 section~\ref{sec:prng:gray:general}.
-Finalement, des instances de PRNGS engendrés selon les méthodes détaillées dans 
-ce chapitre sont présentés en section~\ref{sec:prng;gray:tests}.
-Les sections~\ref{sec:plc} à~\ref{sub:gray} ont été publiées 
+Finalement, des instances de PRNGs engendrés selon les méthodes détaillées dans 
+ce chapitre sont présentées en section~\ref{sec:prng;gray:tests}.
+Les sections~\ref{sec:plc}  à~\ref{sub:gray} ont été publiées 
 à~\cite{chgw+14:oip}.
+La section~\ref{sec:mixing} est publiée dans~\cite{ccgh16}.
 
 
 % This aim of this section is to show 
@@ -49,7 +50,7 @@ On cherche ainsi toutes les matrices $M$ de taille  $2^{\mathsf{N}}\times 2^{\ma
 configuration $i$ est inférieur à ${\mathsf{N}}$;
 
 \item pour $j \neq i$,  $0 \le M_{ij} \le 1$: on construit l'arc de $i$ à $j$ 
-si et seulement si $M_{ij}$ vaut 1 (et 0 sinon)
+si et seulement si $M_{ij}$ vaut 1 (et 0 sinon);
 \item pour chaque indice de ligne  $i$, $1 \le i\le 2^{\mathsf{N}}$, ${\mathsf{N}} = \sum_{1 \le j\le 2^{\mathsf{N}}} M_{ij}$: 
 la matrice est stochastique à droite; 
 \item pour chaque indice de colonne $j$, 
@@ -407,7 +408,7 @@ Enfin, les auteurs de~\cite{ZanSup04} présentent une extension de l'algorithme
 principalement de prouver que si $\mathsf{N}$ est une puissance de 2, 
 le code de Gray équilibré engendré par l'extension est toujours totalement équilibré et 
 que $S_{\mathsf{N}}$ est la séquence de transition d'un code de Gray de $\mathsf{N}$ bits 
-si  $S_{\mathsf{N}-2}$ l'est aussi.. 
+si  $S_{\mathsf{N}-2}$ l'est aussi. 
 Cependant les auteurs ne prouvent pas que leur approche fournit systématiquement  
 un code de Gray (totalement) équilibré. 
 Cette section montre que ceci est vrai en rappelant tout d'abord
@@ -565,7 +566,10 @@ p(e) \left\{
 La chaîne de Markov associée converge vers la distribution uniforme et 
 
 \[
-\forall \varepsilon >0,\, t_{\rm mix}(\varepsilon) \le 32 {\mathsf{N}}^2+ 16{\mathsf{N}}\ln ({\mathsf{N}}+1) = O(N^2).
+\forall \varepsilon >0,\, t_{\rm mix}(\varepsilon) \le 
+x
+\leq \lceil\log_2(\varepsilon^{-1})
+(32 {\mathsf{N}}^2+ 16{\mathsf{N}}\ln ({\mathsf{N}}+1)) 
 \] 
 \end{restatable}
 
@@ -620,7 +624,7 @@ $\textit{fair}\leftarrow\emptyset$\;
 }
 \Return{$\textit{nbit}$}\;
 %\end{scriptsize}
-\caption{Pseudo Code pour évaluer le temps d'arrêt}
+\caption{Pseudo-code pour évaluer le temps d'arrêt}
 \label{algo:stop}
 \end{algorithm}
 
@@ -683,7 +687,7 @@ généralisées.
   définie par 
   $M = \dfrac{1}{2^n} \check{M}$.
   Si $\textsc{gig}(f)$ est fortement connexe, alors 
-  la sortie du générateur de nombres pseudo aléatoires détaillé par 
+  la sortie du générateur de nombres pseudo-aléatoires détaillé par 
   l'algorithme~\ref{CI Algorithm:prng:g} suit une loi qui 
   tend vers la distribution uniforme si 
   et seulement si  $M$ est une matrice doublement stochastique.
@@ -852,8 +856,8 @@ l'on marche.
 Cela s'explique assez simplement. Depuis une configuration initiale, le nombre 
 de configurations qu'on ne peut pas atteindre en une itération est de: 
 \begin{itemize}
-\item $2^n-n$ en unaire. Ceci représente un rapport de 
-  $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$ 
+\item $2^n-n-1$ en unaire. Ceci représente un rapport de 
+  $\dfrac{2^n-n-1}{2^n} = 1-\dfrac{n-1}{2^n}$ 
   de toutes les configurations; plus $n$ est grand, 
   plus ce nombre est proche de $1$, et plus grand devient le nombre 
   d'itérations nécessaires pour atteinte une déviation faible;