]> AND Private Git Repository - hdrcouchot.git/blobdiff - 14Secrypt.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
quelques détails sur les ANR ratées
[hdrcouchot.git] / 14Secrypt.tex
index e160bc33e869112c0452ba24ea228dbba8911b62..a04c11e1ecd22083d519676152f5147904105f76 100644 (file)
@@ -13,13 +13,13 @@ graphe d'itérations, ce qui revient à supprimer en chaque n{\oe}ud de ce graph
 arête sortante et une arête entrante.
 
 
-This aim of this section is to show 
-that finding DSSC matrices from a hypercube
-is a typical finite domain satisfaction 
-problem, classically denoted as 
-Constraint Logic Programming on Finite Domains (CLPFD). 
-This part is addressed in the first section. Next, we analyse the first
-results to provide a generation of DSSC matrices with small mixing times. 
+This aim of this section is to show 
+that finding DSSC matrices from a hypercube
+is a typical finite domain satisfaction 
+problem, classically denoted as 
+Constraint Logic Programming on Finite Domains (CLPFD). 
+This part is addressed in the first section. Next, we analyse the first
+results to provide a generation of DSSC matrices with small mixing times. 
 
 \section{Programmation logique par contraintes sur des domaines finis}
 Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments. 
@@ -567,6 +567,4 @@ Par exemple, pour $n=3$, l'ensemble $\textit{Set}(6)$ vaudraitt $\{3,2\}$.
 On remarque aussi que l'argument de la fonction  $\textit{Random}$
 passe de $n$ à $2^n$.
 
-Dans ce qui suit, on va étudier cet algorithme comparativement à 
-l'algorithme~\ref{CI Algorithm}.