arête sortante et une arête entrante.
-This aim of this section is to show
-that finding DSSC matrices from a hypercube
-is a typical finite domain satisfaction
-problem, classically denoted as
-Constraint Logic Programming on Finite Domains (CLPFD).
-This part is addressed in the first section. Next, we analyse the first
-results to provide a generation of DSSC matrices with small mixing times.
+% This aim of this section is to show
+% that finding DSSC matrices from a hypercube
+% is a typical finite domain satisfaction
+% problem, classically denoted as
+% Constraint Logic Programming on Finite Domains (CLPFD).
+% This part is addressed in the first section. Next, we analyse the first
+% results to provide a generation of DSSC matrices with small mixing times.
\section{Programmation logique par contraintes sur des domaines finis}
Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments.
On remarque aussi que l'argument de la fonction $\textit{Random}$
passe de $n$ à $2^n$.
-Dans ce qui suit, on va étudier cet algorithme comparativement à
-l'algorithme~\ref{CI Algorithm}.