x^{t+1}=F_{f_g}(s_t,x^t).
\end{equation}
Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
x^{t+1}=F_{f_g}(s_t,x^t).
\end{equation}
Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$