Dans le schéma généralisé, à la $t^{\textrm{ème}}$ itération,
c'est l'ensemble
des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui
Dans le schéma généralisé, à la $t^{\textrm{ème}}$ itération,
c'est l'ensemble
des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui
On redéfinit la fonction la fonction
$F_{f_g}: \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\})
\rightarrow \Bool^{\mathsf{N}}$ par
On redéfinit la fonction la fonction
$F_{f_g}: \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\})
\rightarrow \Bool^{\mathsf{N}}$ par
\in \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$,
les
configurations $x^t$ sont définies par la récurrence
\in \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$,
les
configurations $x^t$ sont définies par la récurrence
x^{t+1}=F_{f_g}(s_t,x^t).
\end{equation}
Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
x^{t+1}=F_{f_g}(s_t,x^t).
\end{equation}
Soit alors $G_{f_g}$ une fonction de $\Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
$\mathcal{X}_g = \Bool^{\mathsf{N}} \times
\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
$\mathcal{X}_g = \Bool^{\mathsf{N}} \times
\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{\Nats}$
Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_{f_g}$ est chaotique
si et seulement si $\textsc{gig}(f)$ est fortement connexe.
\end{theorem}
Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$. La fonction $G_{f_g}$ est chaotique
si et seulement si $\textsc{gig}(f)$ est fortement connexe.
\end{theorem}