]> AND Private Git Repository - hdrcouchot.git/blobdiff - sdd.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
-> prng inclus
[hdrcouchot.git] / sdd.tex
diff --git a/sdd.tex b/sdd.tex
index 83bee0617d249c91af5edefcecca0c54bc399ed3..69e09b68564427016e46e4ea2293c4d2b23c968b 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -1,17 +1,7 @@
 
-\JFC{Chapeau chapitre à faire}
 
 
 
-% Cette section énonce quelques notions suffisantes 
-% à la compréhension de ce document.
-% Elle commence par formaliser ce que sont les systèmes dynamiques booléens 
-% (section \ref{sub:sdd}) 
-% et montre comment en extraire leur graphe d'itérations (section~\ref{sub:grIter})
-% et d'interactions (section~\ref{sub:sdd:inter}). 
-% Elle se termine en définissant une distance sur l'espace 
-% $\llbracket 1;n\rrbracket^{\Nats}\times \Bool^n$ (section~\ref{sub:metric}).
-
 
 
 
@@ -332,7 +322,7 @@ les uns par rapport aux autres. Cette matrice est nommée
 
 \begin{theorem}
 Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, 
-$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e}, 
+$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e.}, 
 $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 \end{theorem}