\begin{theorem}
Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$,
-$f_i(\overline{x}^j)$ est égal à $f_i(x)$, \textit{i.e},
+$f_i(\overline{x}^j)$ est égal à $f_i(x)$, \textit{i.e.},
$f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
\end{theorem}