]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
preuve promela:debut de traduction
[hdrcouchot.git] / main.tex
index 327136e24719cb89f110bdb6290401f6165ef870..33a3ba1b69e15e5e583328b8d5dd64b4ad69585c 100644 (file)
--- a/main.tex
+++ b/main.tex
 \usepackage{dsfont}
 \usepackage{graphicx}
 \usepackage{listings}
 \usepackage{dsfont}
 \usepackage{graphicx}
 \usepackage{listings}
+\usepackage{tikz}
+\usepackage{pgfplots}
+\usepgfplotslibrary{groupplots}
+
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
 \usepackage{multirow}
 \usepackage{algorithm2e}
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
 \usepackage{multirow}
 \usepackage{algorithm2e}
+\usepackage{mathtools}
+
 %\declaretheorem{theorem}
 
 %%--------------------
 %\declaretheorem{theorem}
 
 %%--------------------
 \def \P {\mathbb{P}}
 \def \ov {\overline}
 \def \ts {\tau_{\rm stop}}
 \def \P {\mathbb{P}}
 \def \ov {\overline}
 \def \ts {\tau_{\rm stop}}
-
+\def\rl{{^{.}}}
+
+\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
+\DeclarePairedDelimiter\norm{\lVert}{\rVert}%
+
+% Swap the definition of \abs* and \norm*, so that \abs
+% and \norm resizes the size of the brackets, and the 
+% starred version does not.
+\makeatletter
+\let\oldabs\abs
+\def\abs{\@ifstar{\oldabs}{\oldabs*}}
+%
+\let\oldnorm\norm
+\def\norm{\@ifstar{\oldnorm}{\oldnorm*}}
+\makeatother
 
 \newtheorem{theorem}{Théorème}
 \newtheorem{lemma}{Lemme}
 
 \newtheorem{theorem}{Théorème}
 \newtheorem{lemma}{Lemme}
@@ -152,22 +172,31 @@ Blabla blabla.
 
 \mainmatter
 
 
 \mainmatter
 
-\part{Réseaux Discrets}
+\part{Réseaux discrets}
 
 \chapter{Iterations discrètes de réseaux booléens}
 
 \chapter{Iterations discrètes de réseaux booléens}
-\JFC{chapeau à refaire}
-\section{Formalisation}
+
+Ce chapitre formalise tout d'abord ce qu'est 
+un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit 
+les différents modes opératoires, leur représentation à l'aide de 
+graphes et les résultats connus de convergence).
+Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
+comment combiner ces modes pour converger aussi 
+souvent, mais plus rapidement vers un point fixe. Les deux 
+dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
+
+\section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
 \input{sdd}
 
-\section{Combinaisons synchrones et asynchrones}
+\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage}
 \input{mixage}
 
 \section{Conclusion}
 \input{mixage}
 
 \section{Conclusion}
-\JFC{Conclusion à refaire}
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, nous avons exposé comment construire un mode combinant les
+Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens,
+nous avons exposé comment construire un mode combinant les
 avantage du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
 avantage du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
@@ -189,12 +218,18 @@ au chaos}
   discrets chaotiques]{Caracterisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
   discrets chaotiques]{Caracterisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
-La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
-Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
-généralisée (TSI).  Pour chacune d'elle, 
-on introduit une distance différente.
-
-On montre qu'on a des résultats similaires.
+La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
+convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
+La première section  de ce chapitre rappelle ce que sont les systèmes 
+dynamiques chaotiques et leur caractéristiques. Celles-ci dépendent 
+tout d'abord de la stratégie itérée. La section~\ref{sec:TIPE12} 
+se focalise sur le schéma unaire tandis que la section~\ref{sec:chaos:TSI}
+considère le mode généralisé. Pour chacun de ces modes, 
+une distance est définie. Finalement, la section~\ref{sec:11FCT}
+exhibe des conditions suffisantes premettant d'engendrer 
+des fonctions chaotiques seon le mode unaire.
+Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
+dans~\cite{bcgr11:ip}.
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
@@ -203,13 +238,23 @@ On montre qu'on a des résultats similaires.
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
-\section{Schéma généralisé}
+\section{Schéma généralisé}\label{sec:chaos:TSI}
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
+\section{Conclusion}
+Ce chapitre a montré que les itérations unaires sont chaotiques si
+et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
+que les itérations généralisées sont chaotiques si
+et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
+On dispose ainsi à priori d'une collection infinie de fonctions chaotiques.
+Le chapitre suivant s'intéresse à essayer de prédire le comportement 
+de telles fonctions. 
+
+
 \chapter{Prédiction des systèmes chaotiques}
 \input{chaosANN}
 
 \chapter{Prédiction des systèmes chaotiques}
 \input{chaosANN}
 
@@ -225,10 +270,22 @@ On montre qu'on a des résultats similaires.
 \input{14Secrypt}
 
 
 \input{14Secrypt}
 
 
-%\chapter{Quelques expérimentations}
 
 
+\part{Application au marquage de média}
+
+
+\chapter{Des embarquement préservant le chaos}\label{chap:watermarking} 
+\input{oxford}
 
 
-\part{Application au masquage d'information}
+\chapter{Une démarche de  marquage de PDF}
+\input{ahmad}
+
+
+\chapter{Une démarches plus classique de dissimulation: STABYLO}
+ \input{stabylo}
+
+\chapter{Schéma de stéganographie: les dérivées du second ordre}
+ \input{stegoyousra}
 
 
 
 
 
 
@@ -266,6 +323,11 @@ par deux entiers voisins. Par optimisation?
  
 \JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on 
 pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
  
 \JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on 
 pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
+
+
+\JFC{prespectives watermarking : réécrire l'algo nicolas dans le formalisme
+du chapitre 8}
+
 % TSI 2015 
 
 
 % TSI 2015 
 
 
@@ -277,7 +339,7 @@ pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
 
 \appendix
 
 
 \appendix
 
-\chapter{Preuves sur les SDD}
+\chapter{Preuves sur les réseaux discrets}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
@@ -314,10 +376,26 @@ pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
 
 \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
 \input{annexePreuveDistribution}
 
 \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
 \input{annexePreuveDistribution}
+\input{annexePreuveGrayEquilibre}
 \input{annexePreuveStopping}
 
 \input{annexePreuveStopping}
 
+\chapter{Preuves sur le marquage de média}\label{anx:marquage}
+\section{Le marquage est $\epsilon$-sego-secure}
+\input{annexePreuveMarquagedhci}
+
+\section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
+\input{annexePreuveMarquagefldblement}
+
+\section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue}
+\input{annexePreuveMarquageCorrectioncompletude}
 \backmatter
 
 \backmatter
 
+\section{Complexité d'Algorithmes de stéganographie}
+\label{anx:preuve:cplxt}
+\input{annexePreuvesComplexiteStego}
+
+
+
 \bibliographystyle{apalike}
 \bibliography{abbrev,biblioand}
 \listoffigures
 \bibliographystyle{apalike}
 \bibliography{abbrev,biblioand}
 \listoffigures