% This part is addressed in the first section. Next, we analyse the first
% results to provide a generation of DSSC matrices with small mixing times.
-\section{Programmation logique par contraintes sur des domaines finis}
+\section{Programmation logique par contraintes sur des domaines finis}\label{sec:plc}
Tout d'abord, soit ${\mathsf{N}}$ le nombre d'éléments.
Pour éviter d'avoir à gérer des fractions, on peut considérer que
les matrices (d'incidence) à générer ont des lignes et des colonnes dont les
-\subsection{Analyse de l'approche}\label{sub:prng:ana}
+%\subsection{Analyse de l'approche}\label{sub:prng:ana}
Exécutée sur un ordinateur personnelle, PROLOG trouve
en moins d'une seconde les
49 solutions pour $n=2$,
-\section{Graphes
- $\textsc{giu}(f)$
- $\textsc{gig}(f)$
- fortement connexes et doublement stochastiques}\label{sec:gen:dblstc}
-% Secrypt 14
+% section{Graphes
+% $\textsc{giu}(f)$
+% $\textsc{gig}(f)$
+% fortement connexes et doublement stochastiques}\label{sec:gen:dblstc}
+% %
+%Secrypt 14
-\subsection{Suppression des cycles hamiltoniens}
+\section{Suppression des cycles hamiltoniens}
\label{sec:hamiltonian}
-Dans un premier temps, nous montrons en section~\ref{sub:removing:theory} que la
+Dans un premier temps, nous montrons %en section~\ref{sub:removing:theory}
+que la
suppression d'un cycle hamiltonien produit bien des matrices doublement
stochastiques. Nous établissons ensuite le lien avec les codes de Gray
équilibrés.
-\subsubsection{Aspects théoriques}
-\label{sub:removing:theory}
+%\subsubsection{Aspects théoriques}
+%\label{sub:removing:theory}
Nous donnons deux résultats complémentaires, reliant la suppression d'un cycle
hamiltonien du $n$-cube, les matrices doublement stochastiques et la forte
code de Gray est \emph{cyclique} si le premier élément et le dernier ne
différent que par un seul bit.
-\subsection{Lien avec les codes de Gray cycliques (totalement) équilibrés}
+\section{Lien avec les codes de Gray cycliques (totalement) équilibrés}
\label{sub:gray}
La borne inférieure du nombre de codes de Gray ($\left(\frac{n*\log2}{e \log
ce code est totalement équilibré.
\end{xpl}
-\subsection{Génération de codes de Gray équilibrés par induction}
+\section{Génération de codes de Gray équilibrés par induction}
\label{sec:induction}
Dans leur article de 2004~\cite{ZanSup04}, Zanten et Suparta proposent un
On pourrait penser à un algorithme basé sur les itérations généralisées,
c'est-à-dire qui modifierait une partie des éléments de $[n]$ à chaque
itération.
-C'est l'algorithme~\ref{CI Algorithm:prng:g}.
+C'est l'algorithme~\ref{CI Algorithm:prng:g} donné ci-après.
-\begin{algorithm}[h]
+\begin{algorithm}[ht]
%\begin{scriptsize}
\KwIn{une fonction $f$, un nombre d'itérations $b$,
une configuration initiale $x^0$ ($n$ bits)}
correspondante à ce graphe
et $M$ une matrice $2^n\times 2^n$
définie par
- $M = \dfrac{1}{n} \check{M}$.
+ $M = \dfrac{1}{2^n} \check{M}$.
Si $\textsc{gig}(f)$ est fortement connexe, alors
la sortie du générateur de nombres pseudo aléatoires détaillé par
- l'algorithme~\ref{CI Algorithm} suit une loi qui
+ l'algorithme~\ref{CI Algorithm:prng:g} suit une loi qui
tend vers la distribution uniforme si
et seulement si $M$ est une matrice doublement stochastique.
\end{theorem}
\begin{xpl}
- On reprend l'exemple donné à la section~\ref{sub:prng:ana}:
- Dans le $3$-cube cycle hamiltonien défini par la séquence
+ On reprend l'exemple donné à la section~\ref{sec:plc}.
+ Dans le $3$-cube, le cycle hamiltonien défini par la séquence
$000,100,101,001,011,111,110,010,000$ a été supprimé engendrant
la fonction $f^*$ définie par
$$f^*(x_1,x_2,x_3)=
\begin{figure}[ht]
\begin{center}
- \subfigure[Graphe des itérations chaotiques de $f^*$.
+ \subfigure[Graphe $\textsc{gig}(f^*)$
\label{fig:iteration:f*}]{
\begin{minipage}{0.55\linewidth}
\centering
\includegraphics[width=\columnwidth]{images/iter_f}%
\end{minipage}
}%
- \subfigure[Matrice de Markov du graphe d'itérations chaotiques de
- $f^*$\label{fig:markov:f*}]{%
+ \subfigure[Matrice de Markov associée au $\textsc{gig}(f^*)$
+ \label{fig:markov:f*}]{%
\begin{minipage}{0.35\linewidth}
\begin{scriptsize}
\begin{center}
\end{minipage}
}%
\caption{Représentations de $f^*(x_1,x_2,x_3)=
- (x_2 \oplus x_3, \overline{x_1}\overline{x_3} + x_1\overline{x_2},
- \overline{x_1}\overline{x_3} + x_1x_2)$.}\label{fig1}
+ (x_2 \oplus x_3, \overline{x_1}.\overline{x_3} + x_1\overline{x_2},
+ \overline{x_1}.\overline{x_3} + x_1x_2)$.}\label{fig1}
\end{center}
\end{figure}
\end{xpl}
-\begin{table}[table:functions]{Fonctions avec matrices DSCC et le plus faible temps de mélange.}
+\begin{table}[ht]
\begin{center}
\begin{scriptsize}
- \begin{tabular}{|c|l|c|c|}
+ \begin{tabular}{|c|c|l|c|c|}
\hline
- fonction & $f(x)$, $f(x)$ pour $x \in [0,1,2,\hdots,2^n-1]$ & $b$ & $b'$ \\
+ $n$ & fonction & $f(x)$, $f(x)$ pour $x \in [0,1,2,\hdots,2^n-1]$ & $b$ & $b'$ \\
\hline
- $f^{*4}$ & [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] & 17 & 38 \\
+ 4 & $f^{*4}$ & [13,10,9,14,3,11,1,12,15,4,7,5,2,6,0,8] & \textbf{17} & \textbf{38} \\
\hline
- $f^{*5}$ & [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, & 13 & 48 \\
- & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4] & & \\
+ \multirow{4}{0.5cm}{5}& $f^{*5}$ & [29, 22, 25, 30, 19, 27, 24, 16, 21, 6, 5, 28, 23, 26, 1, & \textbf{13} & 48 \\
+ & & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 7, 20, 11, 18, 0, 4] & & \\
+ \cline{2-5}
+ & $g^{*5}$ & [29, 22, 21, 30, 19, 27, 24, 28, 7, 20, 5, 4, 23, 26, 25, & 15 & \textbf{47} \\
+ & & 17, 31, 12, 15, 8, 10, 14, 13, 9, 3, 2, 1, 6, 11, 18, 0, 16
+ & & \\
+
\hline
- $f^{*6}$ & [55, 60, 45, 44, 58, 62, 61, 48, 53, 50, 52, 36, 59, 34, 33, & 11 & 55 \\
- & 49, 15, 42, 47, 46, 35, 10, 57, 56, 7, 54, 39, 37, 51, 2, 1, & & \\
- & 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\
- & 16, 24, 13, 12, 29, 8, 43, 14, 41, 0, 5, 38, 4, 6, 11, 3, 9, 32] & & \\
- \hline
- $f^{*7}$ & [111, 94, 93, 116, 122, 114, 125, 88, 87, 126, 119, 84, 123, & 10 & 63 \\
- & 98, 81, 120, 109, 106, 105, 110, 99, 107, 104, 108, 101, 70, & & \\
- & 117, 96, 67, 102, 113, 64, 79, 30, 95, 124, 83, 91, 121, 24, & & \\
- & 23, 118, 69, 20, 115, 90, 17, 112, 77, 14, 73, 78, 74, 10, 72, & & \\
- & 76, 103, 6, 71, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, & & \\
- & 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, & & \\
- & 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92, & & \\
- & 26, 18, 89, 25, 19, 86, 85, 4, 27, 2, 16, 80, 31, 12, 15, 8, & & \\
- & 3, 11, 13, 9, 5, 22, 21, 68, 7, 66, 65, 1] & & \\
+ \multirow{8}{0.5cm}{6}& $f^{*6}$ &
+ [55, 60, 45, 56, 58, 42, 61, 40, 53, 50, 52, 54, 59, 34, 33, & \multirow{4}{0.5cm}{\textbf{11}}& \multirow{4}{0.5cm}{55}\\
+& & 49, 39, 62, 47, 46, 11, 43, 57, 8, 37, 6, 36, 4, 51, 38, 1, & & \\
+& & 48, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\
+& & 16, 24, 13, 12, 29, 44, 10, 14, 41, 0, 15, 2, 7, 5, 35, 3, 9, 32] & &\\
+ \cline{2-5}
+&$g^{*6}$ & [55, 60, 45, 44, 43, 62, 61, 48, 53, 50, 52, 36, 59, 51, 33, & \multirow{4}{0.5cm}{12}& \multirow{4}{0.5cm}{\textbf{54}}\\
+ & & 49, 15, 14, 47, 46, 35, 58, 57, 56, 7, 54, 39, 37, 3, 38, 1, & & \\
+ & & 40, 63, 26, 25, 30, 19, 27, 17, 28, 31, 20, 23, 21, 18, 22, & & \\
+ & & 16, 24, 13, 12, 29, 8, 10, 42, 41, 0, 5, 2, 4, 6, 11, 34, 9, 32] & & \\
+ \hline
+
+
+
+
+
+
+ &$f^{*7}$ & [111, 94, 93, 116, 122, 114, 125, 88, 87, 126, 119, 84, 123, & 10 & 63 \\
+ & & 98, 81, 120, 109, 106, 105, 110, 99, 107, 104, 108, 101, 70, & & \\
+ & & 117, 96, 67, 102, 113, 64, 79, 30, 95, 124, 83, 91, 121, 24, & & \\
+ & & 23, 118, 69, 20, 115, 90, 17, 112, 77, 14, 73, 78, 74, 10, 72, & & \\
+ & & 76, 103, 6, 71, 100, 75, 82, 97, 0, 127, 54, 57, 62, 51, 59, & & \\
+ & & 56, 48, 53, 38, 37, 60, 55, 58, 33, 49, 63, 44, 47, 40, 42, & & \\
+ & & 46, 45, 41, 35, 34, 39, 52, 43, 50, 32, 36, 29, 28, 61, 92, & & \\
+ & & 26, 18, 89, 25, 19, 86, 85, 4, 27, 2, 16, 80, 31, 12, 15, 8, & & \\
+ & & 3, 11, 13, 9, 5, 22, 21, 68, 7, 66, 65, 1] & & \\
\hline
- $f^{*8}$ &[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180,& 9 & 72 \\
- & 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, &&\\
- & 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216, &&\\
- & 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209, &&\\
- & 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132, &&\\
- & 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191,&&\\
- & 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42, &&\\
- & 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141,&&\\
- & 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, &&\\
- & 145, 175, 206, 143, 136, 11, 142, 129, 8, 7, 198, 197, 4, 195, &&\\
- & 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, &&\\
- & 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120,&&\\
- & 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81,&&\\
- & 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, &&\\
- & 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45, 188, 51, 186, 61, &&\\
- & 40, 119, 182, 181, 53, 179, 54, 33, 49, 15, 174, 47, 60, 171, && \\
- & 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19,&&\\
- & 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, &&\\
- &138, 41, 12, 39, 134, 133, 5, 131, 34, 9, 128]&&\\
+ & $f^{*8}$ &[223, 190, 249, 254, 187, 251, 233, 232, 183, 230, 247, 180,& 9 & 72 \\
+ & & 227, 178, 240, 248, 237, 236, 253, 172, 203, 170, 201, 168, &&\\
+ & & 229, 166, 165, 244, 163, 242, 241, 192, 215, 220, 205, 216, &&\\
+ & & 218, 222, 221, 208, 213, 210, 212, 214, 219, 211, 217, 209, &&\\
+ & & 239, 202, 207, 140, 139, 234, 193, 204, 135, 196, 199, 132, &&\\
+ & & 194, 130, 225, 200, 159, 62, 185, 252, 59, 250, 169, 56, 191,&&\\
+ & & 246, 245, 52, 243, 50, 176, 48, 173, 238, 189, 44, 235, 42, &&\\
+ & & 137, 184, 231, 38, 37, 228, 35, 226, 177, 224, 151, 156, 141,&&\\
+ & & 152, 154, 158, 157, 144, 149, 146, 148, 150, 155, 147, 153, &&\\
+ & & 145, 175, 206, 143, 136, 11, 142, 129, 8, 7, 198, 197, 4, 195, &&\\
+ & & 2, 161, 160, 255, 124, 109, 108, 122, 126, 125, 112, 117, 114, &&\\
+ & & 116, 100, 123, 98, 97, 113, 79, 106, 111, 110, 99, 74, 121, 120,&&\\
+ & & 71, 118, 103, 101, 115, 66, 65, 104, 127, 90, 89, 94, 83, 91, 81,&&\\
+ & & 92, 95, 84, 87, 85, 82, 86, 80, 88, 77, 76, 93, 72, 107, 78, 105, &&\\
+ & & 64, 69, 102, 68, 70, 75, 67, 73, 96, 55, 58, 45, 188, 51, 186, 61, &&\\
+ & & 40, 119, 182, 181, 53, 179, 54, 33, 49, 15, 174, 47, 60, 171, && \\
+ & & 46, 57, 32, 167, 6, 36, 164, 43, 162, 1, 0, 63, 26, 25, 30, 19,&&\\
+ & & 27, 17, 28, 31, 20, 23, 21, 18, 22, 16, 24, 13, 10, 29, 14, 3, &&\\
+ & &138, 41, 12, 39, 134, 133, 5, 131, 34, 9, 128]&&\\
\hline
\end{tabular}
\end{scriptsize}
\end{center}
+\label{table:functions}
+\caption{Fonctions avec matrices DSCC et le plus faible temps de mélange.}
+
\end{table}
Le tableau~\ref{table:functions} reprend une synthèse de
fonctions qui ont été générées selon la méthode détaillée
-à la section~\ref{sec:gen:dblstc}.
-Pour chaque nombre $n=3$, $4$, $5$
-,$6$, tous les cycles hamiltoniens non isomorphes ont été générés. Pour les
-valeur de $n=7$ et $8$, seules $10^{5}$ configurations ont été évaluées. Parmi
+à la section~\ref{sec:hamiltonian}.
+Pour chaque nombre $n=3$, $4$, $5$ et $6$,
+tous les cycles hamiltoniens non isomorphes ont été générés. Pour les
+valeur de $n=7$ et $8$, seules $10^{5}$ cycles ont été évalués. Parmi
toutes les fonctions obtenues en enlevant du $n$-cube ces cycles, n'ont été
retenues que celles qui minimisaient le temps de mélange relatif à une valeur de
$\epsilon$ fixée à $10^{-8}$.
l'on marche.
Cela s'explique assez simplement. Depuis une configuration initiale, le nombre
-de configurations qu'on ne peut pas atteindre en une itération est de
+de configurations qu'on ne peut pas atteindre en une itération est de:
\begin{itemize}
-\item $2^n-n$ en marchant, ce qui représente $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$
+\item $2^n-n$ en unaire. Ceci représente un rapport de
+ $\dfrac{2^n-n}{2^n} = 1-\dfrac{n}{2^n}$
de toutes les configurations; plus $n$ est grand,
plus ce nombre est proche de $1$, et plus grand devient le nombre
- d'itérations suffisantes pour atteinte une déviation faible;
-\item $2^n-2^{n-1}$ en sautant, soit la moitié de toutes les configurations
+ d'itérations nécessaires pour atteinte une déviation faible;
+\item $2^n-2^{n-1}$ dans le cas généralisé,
+ soit la moitié de toutes les configurations
quel que soit $n$; seul 1 bit reste constant tandis que tous les autres peuvent changer. Plus $n$ grandit, plus la proportion de bits constants diminue.
\end{itemize}
-Cependant, dans le cas où l'on saute, chaque itération a une complexité
-plus élevée puisqu'il est nécessaire d'invoquer un générateur
-de nombres pseudo-aléatoires entre 1 et $2^{n}$ tandis qu'il suffit
-d'avoir un générateur entre 1 et $n$ dans le premier cas.
-
-Pour comparer les deux approches, on considère que le générateur aléatoire embarqué est binaire, \textit{i.e.} ne génère qu'un bit (0 ou 1).
+Cependant, dans le cas généralisé, chaque itération a une complexité
+plus élevée puisqu'il est nécessaire d'invoquer un générateur
+produisant un nombre pseudo-aléatoire dans $[2^{n}]$ tandis qu'il suffit
+que celui-ci soit dans $[n]$ dans le cas unaire.
+Pour comparer les deux approches,
+on considère que le générateur aléatoire embarqué est binaire, \textit{i.e.} ne génère qu'un bit (0 ou 1).
-Lorsqu'on marche et qu'on effectue $i$ itérations,
-à chaque itération, la stratégie génère un nombre entre
-$1$ et $n$.
-Elle fait donc $\ln(n)/\ln(2)$ appels à ce générateur en moyenne.
-La démarche fait donc au total $i*\ln(n)/\ln(2)$ appels pour $n$ bits et
-donc $i*\ln(n)/(n*\ln(2))$ appels pour 1 bit généré en moyenne.
-Lorsqu'on saute et qu'on effectue $i'$ itérations,
-à chaque itération, la stratégie génère un nombre entre
+Dans le cas généralisé, si l'on effectue $b$ itérations,
+à chacune d'elles, la stratégie génère un nombre entre
$1$ et $2^n$. Elle fait donc $n$ appels à ce générateur.
-On fait donc au total $i'*n$ appels pour $n$ bits et
-donc $i'$ appels pour 1 bit généré en moyenne.
+On fait donc au total $b*n$ appels pour $n$ bits et
+donc $b$ appels pour 1 bit généré en moyenne.
+Dans le cas unaire, si l'on effectue $b'$ itérations,
+à chacune d'elle, la stratégie génère un nombre entre
+$1$ et $n$.
+Elle fait donc $\ln(n)/\ln(2)$ appels à ce générateur binaire en moyenne.
+La démarche fait donc au total $b'*\ln(n)/\ln(2)$ appels pour $n$ bits et
+donc $b'*\ln(n)/(n*\ln(2))$ appels pour 1 bit généré en moyenne.
Le tableau~\ref{table:marchevssaute} donne des instances de
ces valeurs pour $n \in\{4,5,6,7,8\}$ et les fonctions
-données au tableau~\ref{table:fonctions}.
-On constate que le nombre d'appels par bit généré décroit avec $n$ dans la
-seconde démarche et est toujours plus faible que celui de la première.
+données au tableau~\ref{table:functions}.
+On constate que le nombre d'appels par bit généré décroit avec $n$ dans le
+cas des itérations généralisées et est toujours plus faible
+que celui des itérations unaires.
-\begin{table}
+\begin{table}[ht]
$$
\begin{array}{|l|l|l|l|l|l|}
\hline
-\textrm{Algorithme} & 4 & 5 & 6 & 7 & 8 \\
+\textrm{Itérations} & 4 & 5 & 6 & 7 & 8 \\
\hline
-\textrm{marchant} & 19.0 & 22.2905097109 & 23.6954895899 & 25.2661942985 & 27.0\\
+\textrm{Unaires} & 19.0 & 22.2905097109 & 23.6954895899 & 25.2661942985 & 27.0\\
\hline
-\textrm{sautant} & 17 & 13 & 11 & 10 & 9\\
+\textrm{Généralisées} & 17 & 13 & 11 & 10 & 9\\
\hline
\end{array}
$$
-La qualité des séquences aléatoires a été évaluée à travers la suite
-de tests statistiques développée pour les générateurs de nombres
-pseudo-aléatoires par le
+\section{Tests statistiques}
+
+La qualité des séquences aléatoires produites par
+le générateur des itérations unaires ainsi que
+celles issues des itérations généralisées a été évaluée à travers la suite
+de tests statistiques développée par le
\emph{National Institute of Standards and Technology} (NIST).
Pour les 15 tests, le seuil $\alpha$ est fixé à $1\%$:
une valeur
qui est plus grande que $1\%$ signifie
que la chaîne est considérée comme aléatoire avec une confiance de $99\%$.
- Le tableau~\ref{fig:TEST} donne une vision synthétique de toutes
- les expérimentations.
-L'expérience a montré notamment que toutes ces fonctions
-passent avec succès cette batterie de tests.
+
+
+Le tableau~\ref{fig:TEST} donne une vision synthétique de ces expérimentations.
+Nous avons évalué les fonctions préfixées par
+$f$ (respecitvement $g$) avec le générateur issu des itérations
+généralisées (resp. unaires).
+%L'expérience a montré notamment que toutes ces fonctions
+%passent avec succès cette batterie de tests.
+
+
+
%%%%%%%%% Relancer pour n=6, n=7, n=8
%%%%%%%%% Recalculer le MT
%%%%%%%%% Regenerer les 10^6 bits
%%%%%%%%% Evaluer sur NIST
-\begin{table}[fig:TEST]{Test de NIST réalisé sur les fonctions $f^*$ détaillées au tableau~\label{table:functions}.}
+\begin{table}[ht]
\centering
\begin{scriptsize}
- \begin{tabular}{|*{5}{c|}}
- \hline
-Test & $f^{*4}$ & $f^{*5}$ & $f^{*6}$ & $f^{*7}$ \\ \hline
-Fréquence (Monobit) & 0.025 (0.99) & 0.066 (1.0) & 0.319 (0.99) & 0.001 (1.0) \\ \hline
-Fréquence / bloc & 0.401 (0.99) & 0.867 (1.0) & 0.045 (0.99) & 0.085 (0.99) \\ \hline
-Somme Cumulé* & 0.219 (0.995) & 0.633 (1.0) & 0.635 (1.0) & 0.386 (0.99) \\ \hline
-Exécution & 0.964 (0.98) & 0.699 (0.99) & 0.181 (0.99) & 0.911 (0.98) \\ \hline
-Longue exécution dans un bloc & 0.137 (0.99) & 0.964 (1.0) & 0.145 (0.99) & 0.162 (0.98) \\ \hline
-Rang & 0.616 (0.99) & 0.678 (1.0) & 0.004 (1.0) & 0.816 (1.0) \\ \hline
-Fourier rapide & 0.048 (0.99) & 0.637 (0.97) & 0.366 (0.99) & 0.162 (0.99) \\ \hline
-Patron sans superposition* & 0.479 (0.988) & 0.465 (0.989) & 0.535 (0.989) & 0.499 (0.989) \\ \hline
-Patron avec superposition & 0.897 (1.0) & 0.657 (0.97) & 0.897 (0.98) & 0.236 (0.99) \\ \hline
-Statistiques universelles & 0.991 (0.98) & 0.657 (0.98) & 0.102 (0.98) & 0.719 (0.98) \\ \hline
-Entropie approchée (m=10) & 0.455 (1.0) & 0.964 (1.0) & 0.162 (1.0) & 0.897 (0.98) \\ \hline
-Suite aléatoire * & 0.372 (0.993) & 0.494 (0.986) & 0.243 (0.992) & 0.258 (0.993) \\ \hline
-Suite aléatoire variante * & 0.496 (0.989) & 0.498 (0.992) & 0.308 (0.983) & 0.310 (0.999) \\ \hline
-Série* (m=10) & 0.595 (0.995) & 0.289 (0.975) & 0.660 (0.995) & 0.544 (0.99) \\ \hline
-Complexité linaire & 0.816 (1.0) & 0.897 (0.98) & 0.080 (0.98) & 0.798 (1.0) \\ \hline
- \end{tabular}
+
+
+
\end{scriptsize}
+
+\label{fig:TEST:generalise}
+\caption{Test de NIST pour les fonctions
+ du tableau~\ref{table:functions} selon les itérations généralisées}
+\end{table}
+
+
+\begin{table}[ht]
+ \centering
+ \begin{scriptsize}
+
+
+
+ \end{scriptsize}
+
+\label{fig:TEST:unaire}
+\caption{Test de NIST pour les fonctions
+ du tableau~\ref{table:functions} selon les itérations unaires}
\end{table}
%