]> AND Private Git Repository - hdrcouchot.git/blobdiff - ahmad.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ahmad -> décodage
[hdrcouchot.git] / ahmad.tex
index f1612a86888bf9ff95eb5502ec7919957981a4da..b94f1b96a036551f92fb5c021b638a28eebade7a 100644 (file)
--- a/ahmad.tex
+++ b/ahmad.tex
-En étudiant le watermarking,
+En étudiant les schémas de watermarking,
 nous avons constaté que très peu de travaux ciblaient les documents PDF
 qui représentent cependant une part non anecdotique des données
 échangées en ligne.
 nous avons constaté que très peu de travaux ciblaient les documents PDF
 qui représentent cependant une part non anecdotique des données
 échangées en ligne.
+Parmi ces travaux, \cite{PD2008} propose la modification du nombre 
+d'espaces entre les mots ou entre les paragraphes.
+Similairement, les auteurs  de~\cite{DBLP:journals/sigpro/LeeT10}
+ajoutent des caractères invisibles dans le document.
+En supprimant ces espaces ou caractères invisibles, la marque s'enlève
+facilement.
+Dans~\cite{PD2008}, les auteurs modifient de manière imperceptible
+le positionnements des caractères. D'autres éléments de postionnement
+sont intégrés dans~\cite{WT08}.
+Une attaque qui remodifierait  aléatoirement de manière faible ces positions
+ détruirait la marque dans les deux cas.
+La quantification (au sens du traitement du signal) est une réponse
+à ces attaques: des positions modifiées de manière mal intentionnée  
+peuvent grâce cette démarche être rapprochées (abstraites) en des positions
+préétablies et conserver ainsi leur information et donc la marque.
+STDM~\cite{CW01} est une instance de ces schémas de marquage.
 
 
+Ce chapitre présente une application de STDM au marquage de documents PDFs.
+\JFC{annonce du plan}
+
+\section{Rappels sur la Spread Transform Dither Modulation}
+\label{sec:STDM}
+Les paramètres de ce schéma sont
+\begin{itemize}
+\item le facteur de quantification $\Delta$ qui est un réel positif; plus $\Delta$
+est grand, plus la distortion peut être importante;
+\item le niveau d'indécision  $d_0$ qui est un réel dans
+$[-\dfrac{\Delta}{2},\dfrac{\Delta}{2}]$; plus ce nombre a une valeur absolue
+élevée, plus les erreurs peuvent être corrigées;
+on définit $d_1$ par 
+$$d_1 = \begin{cases} 
+  d_0 + \Delta/2, & \textrm{ si }~~d_0<0 \\  
+  d_0 - \Delta/2, & \textrm{ sinon } 
+\end{cases}
+$$
+\item un nombre $L$ d'éléments dans lequel chaque bit de la marque 
+  est embarqué;
+\item un vecteur $p$ de projection de taille $L$. 
+
+\end{itemize}
+
+Soit donc $x$ un vecteur de taille $L$ dans lequel on souhaite embarquer 
+le bit $m\in\{0,1\}$. 
+Ce vecteur est remplacé par $x'$ défini par 
+\begin{equation}\label{eq:stdm}
+x' = f(x,m) = x+ ((\lfloor(\frac{(x^T p) -d_m}{\Delta})\rfloor\Delta +d_m )~ - x^T p)p
+\end{equation}
+
+Avec les mêmes paramètres $\Delta$, $d_0$ , $L$ et $p$ le message 
+$\hat{m}$ extrait de 
+$x'$ de taille $L$ est défini par:
+\begin{equation}\label{eq:stdm:ext}
+\hat{m} = arg \min_{ m \in \{0, 1\}} \mid x'^T p - f(x,m) \mid
+\end{equation}
+
+Les auteurs de~\cite{CW01} ont montré que la variance de l'erreur 
+est égale à $\Delta^2/12L$ 
+lorsque chacun des $L$ éléments de $x$ suit une ditribution uniforme 
+$U(\Delta)$. 
+Tous les éléments sont en place pour embarquer une marque 
+dans un fichier PDF selon le schéma STDM.
+
+\section{Application au marquage de documents PDF}
+
+On détaille successivement comment insérer une marque dans un document PDF, 
+puis comment l'extraire.
+
+\subsection{Insertion de la marque}
+
+On cherche à ajouter à un document PDF une marque $m$ de $k$ bits 
+déjà codée (cryptée, correction d'erreurs incluse). 
+L'insertion de celle-ci dans le document s'effectue 
+en quatre étapes.
+
+On considère comme fixés les paramètres  
+$\Delta$,  $d_0$  et la manière de construire le vecteur $p$ pour une taille 
+$L$. 
+
+
+\begin{enumerate}
+\item Le vecteur hôte $x$ de taille $N$ 
+  est constitué de l'abscice (flottante) 
+  de chaque caractère rencontré dans le document PDF. 
+  La dimension $L$ est calculée comme la partie entière de $N/k$.
+
+\item Un générateur pseudo aléatoire (initialisé par une clef) 
+construit $k$ ensembles $M_1$, \ldots, $M_k$ 
+de taille $L$ mutuellement disjoints dans $[1,N]$. Ainsi 
+$\bigcup_{1\le i \le k} M_i \subseteq [N]$. 
+
+
+\item Pour chacun des ensembles $M_i$, $ 1 \le i \le k$, 
+  de l'étape précédente,  le vecteur $\dot{x} = (x_{j_1}, \ldots ,x_{j_L})$,
+  est construit où $\{j_1, \ldots, j_L\} = M_i$.
+  Le vecteur $\dot{x'} = f(\dot{x},m_i)$ est
+  construit selon l'équation~(\ref{eq:stdm}).
+  Dans $x$, chacun des $x_{j_1}, \ldots, x_{j_L}$ est remplacé par 
+  $\dot{x'}_{j_1}, \ldots, \dot{x'}_{j_L}$.
+
+\item L'abscisse de chaque caractère est ainsi redéfini 
+  selon le nouveau vecteur de positions ${x'}$. 
+\end{enumerate}
+
+Voyons comment extraire une marque d'une document PDF.
+
+\subsection{Exctraction de la marque}
+
+On considère comme connue la taille de la marque: c'est $k$ bits.
+Les paramètres $\Delta$,  $d_0$ et la manière de construire 
+$p$ en fonction de $L$ sont les mêmes qu'à l'étape précédente d'insertion de 
+marque.
+
+\begin{enumerate}
+\item on récupère le vecteur $x'$ (de taille $N$ lui aussi) des abscices des
+  caractères du document PDF comme dans la phase d'insertion. 
+  la valeur de $L$ est définie comme précédement.
+
+\item le même générateur pseudo aléatoire (initialisé avec la même clef) 
+construit les $k$ mêmes ensembles $M_1$, \ldots, $M_k$ 
+de taille $L$ mutuellement disjoints dans $[1,N]$. 
+
+\item Pour chacun des ensembles $M_i$, $ 1 \le i \le k$, 
+  de l'étape précédente,  le vecteur $\dot{x'} = (x'_{j_1}, \ldots, x'_{j_L})$,
+  est construit où $\{j_1, \ldots, j_L\} = M_i$.
+  Le bit $\hat{m}_i$  est défini selon l'équation~(\ref{eq:stdm:ext})
+  en remplaçant $x'$ par $\dot{x'}$ .
+\end{enumerate}
+
+\section{Choix des paramètres}
+Le schéma de marquage est paramétré par $\Delta$,  $d_0$ et la manière de construire le vecteur $p$ pour une taille $L$. 
+Les travaux réalisés se sont focalisés sur l'influence du paramètre 
+$\Delta$ dans l'algorithme.
 
 
-Several methods of  Steganography and Digital Watermarking  in PDF and
-Text documents have been proposed. In~\cite{PD2008}, a steganographic approach
-is   presented   by   hiding    information   using   inter-word   and
-inter-paragraph  spacing in  a  text. The  main  disadvantage of  this
-method is that the hidden message  can be destroyed by simply deleting
-some  spaces between  the  words  in the  stego  text.  In~\cite{PD2008},
-two
-different  algorithms   are  proposed  which  are   considered  as  an
-alternative  for the  original  TJ operator  method.  The TJ  operator
-displays  the  text  string  in  a  PDF  document,  allows  individual
-character positioning  and uses character and  word spacing parameters
-from  the  text  state.  The alternative  method  has  less  embedding
-capacity than the  original method. In~\cite{LLGC13}  an encryption technique
-is  proposed by  combining  the information  hiding  technique in  PDF
-documents and  the quadratic  residue as  basis and  then apply  it to
-copyright protection and  digital learning. The main  drawback of this
-method is  that the hidden  message can be  easly removed. In~\cite{DBLP:journals/sigpro/LeeT10}, an
-embedding method in  source programs using invisible  $ASCII$ codes is
-proposed. This method is very easy  to detect by simply extracting the
-modified  text  from  the  document,  converting  it  to  hexadecimal,
-extracting all  the inserted  invisible $ASCII$ characters,  and then,
-decoding the embedded message.  In~\cite{WT08}, a data hiding in PDF files and
-applications by  imperceivable modifications of PDF  object parameters
-is proposed. This  method serves to hide data  by slight modifications
-of the values  of various PDF object parameters such  as media box and
-text   matrices.  The   method  is   considered  to   have  sufficient
-transparency  while  its  main  drawback is  its  very  low  embedding
-capacity.
-
-Substitutive   Quantization  Index   Modulation  (QIM)   methods  were
-introduced  by Chen  and Wornell~\cite{CW01}. The  Spread Transform  Dither
-Modulation (STDM) is an implementation of  this scheme and it has been
-considered  robust  under  different watermarking
-attacks~\cite{DM10,WLSYNW13,CW99}.
-
-In this  paper, the goal  is to  present a blind  digital watermarking
-scheme for PDF documents based on  a variant of the Quantization Index
-Modulation   method   called   Spread  Transform   Dither   Modulation
-(STDM). The main difficulty in PDF  documents is to find a significant
-watermarking  space in  order  to  embed the  secret  message under  a
-sufficient Transparency-Robustness tradeoff. Our contribution consists
-in using  the $x$-coordinates of a  group of characters to  embed each
-bit  of  the  secret  message  while  choosing  the  appropriate  mean
-distortion value which gives  the strong tradeoff between transparency
-and robustness.
\ No newline at end of file