]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
plan
[hdrcouchot.git] / main.tex
index 27c159c8017829f0a7909829d1402375a90a4494..9713260e28e93c4b290b67156c9f656f8c122c6d 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -16,6 +16,8 @@
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
+\usepackage{multirow}
+\usepackage{algorithm2e}
 %\declaretheorem{theorem}
 
 %%--------------------
@@ -141,18 +143,14 @@ Blabla blabla.
 
 \part{Réseaux Discrets}
 
-
-
 \chapter{Iterations discrètes de réseaux booléens}
 \JFC{chapeau à refaire}
 \section{Formalisation}
 \input{sdd}
 
-
 \section{Combinaisons synchrones et asynchrones}
 \input{mixage}
 
-
 \section{Conclusion}
 \JFC{Conclusion à refaire}
 
@@ -165,7 +163,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 
 
 
-\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de  convergence}\label{chap:promela}
+\chapter{Preuve automatique de  convergence}\label{chap:promela}
 \input{modelchecking}
 
 
@@ -176,8 +174,9 @@ de l'asynchronisme en terme de vitesse de convergence.
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
-\chapter{Characterisation des systèmes 
-  discrets chaotiques}
+\chapter[Caracterisation des systèmes 
+  discrets chaotiques]{Caracterisation des systèmes 
+  discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
@@ -190,29 +189,40 @@ On montre qu'on a des résultats similaires.
 \label{subsec:Devaney}
 \input{devaney}
 
-\section{Schéma unaire}
+\section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
 \section{Schéma généralisé}
 \input{15TSI}
 
 
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}\label{sec:11FCT}
+\input{11FCT} 
 
 \chapter{Prédiction des systèmes chaotiques}
+\input{chaosANN}
 
-13 JournalMichel
 
 
 
+\part{Applications à la génération de nombres pseudo aléatoires}
 
+\chapter{Caractérisation des générateurs chaotiques}
+\input{15RairoGen}
 
+\chapter{Fonctions dont les graphes 
+  $\textsc{giu}(f)$ 
+  $\textsc{gig}(f)$ 
+  sont fortement connexes}
+% Secrypt 14
+% TSI 2015
 
+\chapter{Quantifier l'écart par rapport à la distribution uniforme} 
+%15 Rairo
 
 
 
-
- \part{Conclusion et Perspectives}
+\part{Conclusion et Perspectives}
 
 \JFC{Perspectives pour SDD->Promela}
 Among drawbacks of the method,  one can argue that bounded delays is only 
@@ -226,6 +236,24 @@ One challenge of this work should consist in weakening this constraint.
 We plan as future work to take into account other automatic approaches 
 to discharge proofs notably by deductive analysis~\cite{CGK05}. 
 
+\JFC{Perspective ANN}
+
+In  future  work we  intend  to  enlarge  the comparison  between  the
+learning   of  truly   chaotic  and   non-chaotic   behaviors.   Other
+computational intelligence tools such  as support vector machines will
+be investigated  too, to  discover which tools  are the  most relevant
+when facing a truly chaotic phenomenon.  A comparison between learning
+rate  success  and  prediction  quality will  be  realized.   Concrete
+consequences in biology, physics, and computer science security fields
+will then be stated.
+Ajouter lefait que le codede gray n'est pas optimal.
+On pourrait aussi travailler à établir un classement qui préserverait 
+le fait que deux configurations voisines seraient représentées 
+par deux entiers voisins.
+
+
+
 
 % \chapter{Conclusion}
 
@@ -249,31 +277,28 @@ to discharge proofs notably by deductive analysis~\cite{CGK05}.
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
 \input{annexecontinuite.tex}
 
 
-
-
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
 \input{caracunaire.tex}
 
 
-\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise}
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
 \input{caracgeneralise.tex}
 
 
-
-
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}
 
 
-
+\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
+\input{annexePreuveDistribution}
 
 \backmatter