]> AND Private Git Repository - hdrcouchot.git/blobdiff - sdd.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
correction prng chaos chap 5
[hdrcouchot.git] / sdd.tex
diff --git a/sdd.tex b/sdd.tex
index 2352fadd17bb7a6c86e3ffe315fb07f88bbe31c7..c41efa9f35977fa5216b3cff07e52d3b124b0d1a 100644 (file)
--- a/sdd.tex
+++ b/sdd.tex
@@ -1,17 +1,7 @@
 
 
-\JFC{Chapeau chapitre à faire}
 
 
 
 
 
 
-% Cette section énonce quelques notions suffisantes 
-% à la compréhension de ce document.
-% Elle commence par formaliser ce que sont les systèmes dynamiques booléens 
-% (section \ref{sub:sdd}) 
-% et montre comment en extraire leur graphe d'itérations (section~\ref{sub:grIter})
-% et d'interactions (section~\ref{sub:sdd:inter}). 
-% Elle se termine en définissant une distance sur l'espace 
-% $\llbracket 1;n\rrbracket^{\Nats}\times \Bool^n$ (section~\ref{sub:metric}).
-
 
 
 
 
 
 
@@ -40,7 +30,7 @@ et $\overline{x}^i$ pour $\overline{x}^{\{i\}}$ pour $i \in [{\mathsf{N}}]$
 Pour tout $x$ et  $y$ dans  $\Bool^{\mathsf{N}}$, l'ensemble 
 $\Delta(x, y)$,  contient les $i \in [{\mathsf{N}}]$
 tels que $x_i \neq y_i$.
 Pour tout $x$ et  $y$ dans  $\Bool^{\mathsf{N}}$, l'ensemble 
 $\Delta(x, y)$,  contient les $i \in [{\mathsf{N}}]$
 tels que $x_i \neq y_i$.
-Soit enfin $f : \Bool^n \rightarrow \Bool^{\mathsf{N}}$. Son $i^{\textrm{ème}}$ composant
+Soit enfin $f : \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$. Son $i^{\textrm{ème}}$ composant
 est nommé $f_i$ qui est une fonction de $\Bool^{\mathsf{N}}$ dans $\Bool$.
 Pour chaque 
 $x$ dans $\Bool^{\mathsf{N}}$, l'ensemble 
 est nommé $f_i$ qui est une fonction de $\Bool^{\mathsf{N}}$ dans $\Bool$.
 Pour chaque 
 $x$ dans $\Bool^{\mathsf{N}}$, l'ensemble 
@@ -105,8 +95,8 @@ Pour $x=(0,1,0)$ les assertions suivantes se déduisent directement du tableau:
 \end{xpl}
 
 \subsection{Réseau booléen}
 \end{xpl}
 
 \subsection{Réseau booléen}
-Soit $n$ un entier naturel représentant le nombre 
-d'éléments étudiés (gènes, protéines,\ldots).
+Soit ${\mathsf{N}}$ un entier naturel représentant le nombre 
+d'éléments étudiés.
 Un réseau booléen  est 
 défini à partir d'une fonction booléenne:
 \[
 Un réseau booléen  est 
 défini à partir d'une fonction booléenne:
 \[
@@ -128,7 +118,7 @@ schémas suivants :
   défini  par une  suite 
   $S  = \left(s^t\right)^{t \in  \mathds{N}}$ qui est  une séquence
   d'indices dans $[{\mathsf{N}}]$. Cette suite est appelée \emph{stratégie unaire}. 
   défini  par une  suite 
   $S  = \left(s^t\right)^{t \in  \mathds{N}}$ qui est  une séquence
   d'indices dans $[{\mathsf{N}}]$. Cette suite est appelée \emph{stratégie unaire}. 
-  Il est basé sur la relation définie pour tout $i \in [{\mathsf{N}}]$ par
+  Ce mode est défini pour tout $i \in [{\mathsf{N}}]$ par
   
 \begin{equation}
   x^{t+1}_i=
   
 \begin{equation}
   x^{t+1}_i=
@@ -194,8 +184,10 @@ sont les éléments de $\Bool^{\mathsf{N}}$ (voir \textsc{Figure}~\ref{fig:xpl:g
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement si $y=f(x)$.
 \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement si $y=f(x)$.
 \item Le \emph{graphe des itérations unaires} de $f$, noté $\textsc{giu}(f)$
-est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
-et seulement s'il existe $x \in \Delta f(x)$ tel que $y = \overline{x}^i$.
+est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ pour $x \neq$ si 
+et seulement s'il existe $i \in \Delta f(x)$ tel que $y = \overline{x}^i$.
+Si $\Delta f(x)$ est vide, on ajoute l'arc $x \rightarrow x$.
+
 \item Le \emph{graphe des itérations généralisées} de $f$, noté $\textsc{gig}(f)$
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement s'il existe un ensemble $I\subseteq \Delta f(x)$ tel que 
 \item Le \emph{graphe des itérations généralisées} de $f$, noté $\textsc{gig}(f)$
 est le graphe orienté de $\Bool^{\mathsf{N}}$ qui contient un arc $x \rightarrow y$ si 
 et seulement s'il existe un ensemble $I\subseteq \Delta f(x)$ tel que 
@@ -282,7 +274,7 @@ On a la proposition suivante:
 
 
 \begin{theorem}\label{Prop:attracteur}
 
 
 \begin{theorem}\label{Prop:attracteur}
-Le point $x$ est un point fixe si et seulement si 
+La configuration $x$ est un point fixe si et seulement si 
 $\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
 $\{x\}$ est un attracteur du graphe d'itération (synchrone, unaire, généralisé).
 En d'autres termes, les attracteurs non cycliques de celui-ci 
 sont les points fixes de $f$.
@@ -330,7 +322,7 @@ les uns par rapport aux autres. Cette matrice est nommée
 
 \begin{theorem}
 Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, 
 
 \begin{theorem}
 Si $f_i$ ne dépend pas de $x_j$, alors pour tout $x\in [{\mathsf{N}}]$, 
-$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e}, 
+$f_i(\overline{x}^j)$ est égal à  $f_i(x)$, \textit{i.e.}, 
 $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 \end{theorem} 
 
 $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 \end{theorem} 
 
@@ -339,7 +331,7 @@ $f'_{ij}(x)=0$. Ainsi $B(f)_{ij}$ est nulle. La réciproque est aussi vraie.
 
 En outre, les interactions peuvent se  représenter à l'aide d'un 
 graphe $\Gamma(f)$ orienté et signé défini ainsi: 
 
 En outre, les interactions peuvent se  représenter à l'aide d'un 
 graphe $\Gamma(f)$ orienté et signé défini ainsi: 
-l'ensemble des sommet %s est 
+l'ensemble des sommets est 
 $[{\mathsf{N}}]$ et il existe un arc de $j$ à $i$ de signe
  $s\in\{-1,1\}$, noté $(j,s,i)$, si $f_{ij}(x)=s$ pour au moins
 un $x\in\Bool^{\mathsf{N}}$. 
 $[{\mathsf{N}}]$ et il existe un arc de $j$ à $i$ de signe
  $s\in\{-1,1\}$, noté $(j,s,i)$, si $f_{ij}(x)=s$ pour au moins
 un $x\in\Bool^{\mathsf{N}}$. 
@@ -535,22 +527,21 @@ Parmi toutes les stratégies unaires de
 $[{\mathsf{N}}]^{\Nats}$, on qualifie de:
 \begin{itemize}
 \item \emph{périodiques} celles 
 $[{\mathsf{N}}]^{\Nats}$, on qualifie de:
 \begin{itemize}
 \item \emph{périodiques} celles 
-qui sont constituées par une répétition infinie 
+qui sont constituées par une répétition infinie 
 d'une même séquence $S$ complète relativement à $[{\mathsf{N}}]$.
 En particulier toute séquence périodique est complète.
 \item \emph{pseudo-périodiques} celles 
 d'une même séquence $S$ complète relativement à $[{\mathsf{N}}]$.
 En particulier toute séquence périodique est complète.
 \item \emph{pseudo-périodiques} celles 
-qui sont constituées par une succession infinie de séquences 
+qui sont constituées par une succession infinie de séquences 
 (de longueur éventuellement variable non supposée bornée) complètes.
 Autrement dit dans chaque stratégie pseudo-périodique, chaque indice de
 (de longueur éventuellement variable non supposée bornée) complètes.
 Autrement dit dans chaque stratégie pseudo-périodique, chaque indice de
-$1$ à ${\mathsf{N}}$ revient infiniment.
+$1$ à ${\mathsf{N}}$ revient infiniment.
 \end{itemize}
 
 
 \end{itemize}
 
 
-François Robert~\cite{Rob95}
-a énoncé en 1995 le théorème suivant de convergence 
+On a le théorème suivant de convergence 
 dans le mode des itérations unaires.
 
 dans le mode des itérations unaires.
 
-\begin{theorem}\label{Th:conv:GIU}
+\begin{theorem}[~\cite{Rob95}]\label{Th:conv:GIU}
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie unaire est
 pseudo-périodique, alors tout chemin de $\textsc{giu}(f)$ atteint 
 l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie unaire est
 pseudo-périodique, alors tout chemin de $\textsc{giu}(f)$ atteint 
 l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
@@ -559,11 +550,11 @@ l'unique point fixe $\zeta$ en au plus ${\mathsf{N}}$ pseudo-périodes.
 Le qualificatif \emph{pseudo-périodique} peut aisément 
 s'étendre aux stratégies généralisées comme suit.
 Lorsqu'une stratégie généralisée est constituée d'une 
 Le qualificatif \emph{pseudo-périodique} peut aisément 
 s'étendre aux stratégies généralisées comme suit.
 Lorsqu'une stratégie généralisée est constituée d'une 
-succession infinie de séquences de parties de $[{\mathsf{N}}]$ 
+succession infinie de séquences de parties de $[{\mathsf{N}}]$ 
 dont l'union est $[{\mathsf{N}}]$, cette stratégie est {pseudo-périodique}.
 dont l'union est $[{\mathsf{N}}]$, cette stratégie est {pseudo-périodique}.
-J. Bahi~\cite{Bah00} a démontré le théorème suivant:
+On a le théorème suivant.
 
 
-\begin{theorem}\label{Th:Bahi}
+\begin{theorem}[~\cite{Bah00}]\label{Th:Bahi}
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie généralisée
 est pseudo-périodique alors
 tout chemin de $\textsc{gig}(f)$ (et donc de $\textsc{giu}(f)$) 
 Si le graphe $\Gamma(f)$ n'a pas de cycle et si la stratégie généralisée
 est pseudo-périodique alors
 tout chemin de $\textsc{gig}(f)$ (et donc de $\textsc{giu}(f)$)