+Cet algorithme peut être vu comme $b$ compostions de la function $F_{f_u}$.
+Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
+compositions fonctionnelles de $F_{f_u}$.
+Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
+$F_{{f_u},p_i} : \mathds{B}^\mathsf{N} \times \llbracket 1, \mathsf{N} \rrbracket^{p_i}
+\rightarrow \mathds{B}^\mathsf{N}$ définie par
+
+$$
+F_{f_u,p_i} (x,(u^0, u^1, \hdots, u^{p_i-1})) \mapsto
+F_{f_u}(\hdots (F_{f_u}(F_{f_u}(x,u^0), u^1), \hdots), u^{p_i-1}).
+$$
+
+
+on construit l'espace
+ $\mathcal{X}_{\mathsf{N},\mathcal{P}}= \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}}$, où
+$\mathds{S}_{\mathsf{N},\mathcal{P}}=
+\llbracket 1, \mathsf{N} \rrbracket^{\Nats}\times
+\mathcal{P}^{\Nats}$.
+Chaque élément de l'espace est une paire où le premier élément est
+un $\mathsf{N}$-uplet de $\Bool^{\mathsf{N}}$ (comme dans $\mathcal{X}_u$).
+Le second élément est aussi une paire $((u^k)_{k \in \Nats},(v^k)_{k \in \Nats})$ de suites infinies.
+La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
+La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
+
+Définissons la fonction de décallage $\Sigma$ pour chaque élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
+$$\begin{array}{cccc}
+\Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow
+&\mathds{S}_{\mathsf{N},\mathcal{P}} \\
+& \left((u^k)_{k \in \mathds{N}},(v^k)_{k \in \mathds{N}}\right) & \longmapsto & \left(\sigma^{v^0}\left((u^k)_{k \in \mathds{N}}\right),\sigma\left((v^k)_{k \in \mathds{N}}\right)\right).
+\end{array}
+$$
+En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et
+effectue $v^0$ décallage vers la droite sur la première et un décallage vers la droite
+sur la seconde.
+
+
+Ainsi, les sorties $(y^0, y^1, \hdots )$ produites par le générateur détaillé dans
+l'algorithme~\ref{CI Algorithm}
+sont les premiers composants des itérations $X^0 = (x^0, (u,v))$ et $\forall n \in \mathds{N},
+X^{n+1} = G_{f_u,\mathcal{P}}(X^n)$ dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ où
+$G_{f_u,\mathcal{P}}$ est définie par:
+
+
+
+
+\begin{equation}
+\begin{array}{cccc}
+G_{f_u,\mathcal{P}} :& \mathcal{X}_{\mathsf{N},\mathcal{P}} & \longrightarrow & \mathcal{X}_{\mathsf{N},\mathcal{P}}\\
+ & (e,(u,v)) & \longmapsto & \left( F_{f,v^0}\left( e, (u^0, \hdots, u^{v^0-1}\right), \Sigma (u,v) \right) .
+\end{array}
+\end{equation}
+
+
+
+\subsection{Une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
+
+On définit la fonction $d$ sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ comme suit:
+Soit $x=(e,s)$ et $\check{x}=(\check{e},\check{s})$ dans
+$\mathcal{X}_{\mathsf{N},\mathcal{P}} = \mathds{B}^\mathsf{N} \times \mathds{S}_{\mathsf{N},\mathcal{P}} $,
+où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} =
+\mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$.
+\begin{itemize}
+\item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
+on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
+part of $d(X,\check{X})$.
+\item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
+between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by
+ differences between $v^1$ and $\check{v}^1$, followed by the differences
+between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
+More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
+\begin{itemize}
+\item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
+\item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
+digits are $|u^0-\check{u}^0|$. They are followed by
+$|u^1-\check{u}^1|$ written with $n$ digits, etc.
+\begin{itemize}
+\item If
+$v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
+part of $d(X,\check{X})$ is completed by 0's until reaching
+$p+n\times \max{(\mathcal{P})}$ digits.
+\item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$ blocs of $n$
+digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
+$\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
+\item The case $v^0>\check{v}^0$ is dealt similarly.
+\end{itemize}
+\item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
+\end{itemize}
+\end{itemize}
+
+
+
+
+\begin{xpl}
+Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that
+$s=\left\{
+\begin{array}{l}
+u=\underline{6,} ~ \underline{11,5}, ...\\
+v=1,2,...
+\end{array}
+\right.$
+while
+$\check{s}=\left\{
+\begin{array}{l}
+\check{u}=\underline{6,4} ~ \underline{1}, ...\\
+\check{v}=2,1,...
+\end{array}
+\right.$.
+
+So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
+Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
+and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
+at most $\max{(\mathcal{P})}$ times, we must complete this
+value by some 0's in such a way that the obtained result
+has $n\times \max{(\mathcal{P})}=22$ digits, that is:
+0600000000000000000000. Similarly, the $\check{v}^0=2$ first
+terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
+difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
+we start again with the remainder of the sequences.
+\end{xpl}
+
+
+\begin{xpl}
+Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
+
+$s=\left\{
+\begin{array}{l}
+u=\underline{6,7,} ~ \underline{4,2,} ...\\
+v=2,2,...
+\end{array}
+\right.$
+while
+$\check{s}=\left\{
+\begin{array}{l}
+\check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
+\check{v}=7,2,...
+\end{array}
+\right.$
+
+So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
+and $|9800000-4200000| = 5600000$.
+\end{xpl}
+
+
+
+$d$ can be more rigorously written as follows:
+$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
+where: % $p=\max \mathcal{P}$ and:
+\begin{itemize}
+\item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
+\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline
+$$\begin{array}{rcl}
+ d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
+ \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}}
+ \bigg(|v^k - \check{v}^k| \\
+ & & + \left| \sum_{l=0}^{v^k-1}
+ \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
+ \sum_{l=0}^{\check{v}^k-1}
+ \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
+\end{array}
+$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
+\end{itemize}
+
+
+Let us show that,
+\begin{prpstn}
+$d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
+\end{prpstn}
+
+
+\subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$}
+
+\subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
+