-\end{theorem}
-On alors corollaire suivant
-
-\begin{corollary}
- Le générateur de nombre pseudo aléatoire détaillé
- à l'algorithme~\ref{CI Algorithm}
- n'est pas chaotique
- sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
-\end{corollary}
-\begin{proof}
- Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
- Que $b$ soit pair ou impair, $\textsc{giu}_{\mathcal{b}}(f)$
- n'est pas fortement connexe.
-\end{proof}
-
+\end{restatable}
+% On alors corollaire suivant
+
+% \begin{corollary}
+% Le générateur de nombre pseudo aléatoire détaillé
+% à l'algorithme~\ref{CI Algorithm}
+% n'est pas chaotique
+% sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
+% \end{corollary}
+% \begin{proof}
+% Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
+% Que $b$ soit pair ou impair, $\textsc{giu}_{\{b\}}(f)$
+% n'est pas fortement connexe.
+% \end{proof}
+
+
+\section{Conclusion}
+Ce chapitre a proposé un algorithme permettant de construire un
+PRNG chaotique à partir d'un PRNG existant. Pour ce faire, il est nécessaire
+et suffisant que la fonction $f$ qui est itérée un nombre $b$ de fois
+possède un $\textsc{giu}_{\{b\}}(f)$ fortement connexe et que sa matrice de Markov associée soit doublement stochastique.
+Le chapitre suivant montre comment construire une telle fonction.