Pour détecter de la présence ou non d'un message dans une image,
on peut demander l'oracle à un
un \emph{stéganalyseur}~\cite{LHS08,DBLP:conf/ih/Ker05,FK12}.
-Usuellement, un outil de cette fammille, après
+Usuellement, un outil de cette famille, après
une démarche d'apprentissage, classifie les images
en fonction de caractéristiques numériques.
A partir de caractéristiques de voisinage nommées
-SPAM~\cite{DBLP:journals/tifs/PevnyBF10}, HUGO mesure la distortion
+SPAM~\cite{DBLP:journals/tifs/PevnyBF10}, HUGO mesure la distorsion
qui serait induite par la modification
de chaque pixel. Similairement,
-WOW et UNIWARD construisent une carte de distortion mais celle-ci est
+WOW et UNIWARD construisent une carte de distorsion mais celle-ci est
issue caractéristiques directionnelles calculées à partir d'ondelettes.
-A partir de ces cartes de distortions, chacun de ces algorithmes selectionne
-les pixels dont les modifications induisent la distortion la plus faible
+A partir de ces cartes de distorsion, chacun de ces algorithmes sélectionne
+les pixels dont les modifications induisent la distorsion la plus faible
possible. Ceci revient à définir une fonction de signification $u$.
La complexité du schéma de stéganographie est peu ou prou celle du calcul
de cette carte, et elle est élevée dans le cas
\end{figure*}
-La sécurité de l'encryptage est garantie par le système asymmétrique
+La sécurité de l'encryptage est garantie par le système asymétrique
de Blum-Goldwasser~\cite{Blum:1985:EPP:19478.19501} basé sur le PRNG
Blum Blum Shub~\cite{DBLP:conf/crypto/ShubBB82}.
Ainsi, à partir d'une clef $k$ et un message \textit{mess},
L'idée d'embarquer dans des bords dans une image
repose sur le fait que les pixels de ceux-ci représentent déjà une
rupture de continuité entre pixels voisins.
-Une faible modification de ceux-ci n'a donc pas un grand impact sur la qualité
-de l'image, condition nécéessaire lorsqu'on prétend être indétectable.
+Une faible modification de ceux-ci n'aurait donc pas un grand impact sur la qualité
+de l'image, condition nécessaire lorsqu'on prétend être indétectable.
STABYLO est basé sur les
filtres de Canny~\cite{Canny:1986:CAE:11274.11275}, comme démarche de détection
bits les plus significatifs (pratiquement $b$ vaut $6$ ou $7$)
et un masque de sélection $T$ $T=3,5,7$).
Plus élevée est la valeur de ce masque, plus grand est le nombre
-de pixels de bors mais plus grossière est l'approche.
+de pixels de bord mais plus grossière est l'approche.
Dans le diagramme de flux, cette étape de sélection
est représentée par ``x=Edge Detection(b, T, X)''.
La section suivante montre comment le schéma s'adapte
aux valeurs de $m$ et de $x$.
-\subsection{Un embarquement adaptif}\label{sub:adaptive}
+\subsection{Un embarquement adaptatif}\label{sub:adaptive}
Nous argumentons que le schéma d'embarquement doit s'adapter
au message $m$ et au nombre de bits disponibles pour cet embarquement.
Deux stratégies sont possibles dans STABYLO.
-Dans la première, dite \emph{adaptive}, le taux d'embarquement
+Dans la première, dite \emph{adaptative}, le taux d'embarquement
(rapport entre le nombre de bits embarqués par rapport au nombre de pixels
modifiés) dépend du nombre de bits disponibles à l'issue de l'extraction
des pixels de bords. Si ce nombre de bits est inférieur au double de
la taille du message, celui-ci est découpé en plusieurs parties.
La justification de ce rapport de 1 à 2 à donné ci dessous dans la partie STC.
Dans la seconde dite \emph{fixe}, ce taux est fixe et l'algorithme augmente
-iterativement la valeur de $T$ jusqu'à obtenir à nouveau deux fois plus de bits
+iterrativement la valeur de $T$ jusqu'à obtenir à nouveau deux fois plus de bits
de bords qu'il n'y en a dans le message.
STABYLO applique alors
-par défaut l'agorithme STC~\cite{DBLP:journals/tifs/FillerJF11}
-pour ne modifier aussi peu que posible les bits parmi ceux dont il dispose.
-Dans le cas où c'est la stratégie adaptive qui est choisie, le paramètre
-$\rho$ de cet algorithme vaut 1 pour chaqun des bits.
+par défaut l'algorithme STC~\cite{DBLP:journals/tifs/FillerJF11}
+pour ne modifier aussi peu que possible les bits parmi ceux dont il dispose.
+Dans le cas où c'est la stratégie adoptive qui est choisie, le paramètre
+$\rho$ de cet algorithme vaut 1 pour chacun des bits.
Dans le cas contraire, la valeur de ce paramètre varie en
fonction du seuil $T$ de l'algorithme de détection de bord comme suit:
$$
comparant l'ordre de grandeur de son temps d'exécution avec ceux des
principaux schémas existants à savoir HUGO~\cite{DBLP:conf/ih/PevnyFB10},
WOW~\cite{conf/wifs/HolubF12} et UNIWARD~\cite{HFD14}.
-Chacune de ces quatre méthodes commence par calculer un carte de distortion
+Chacune de ces quatre méthodes commence par calculer un carte de distorsion
de l'ensemble des pixels et se termine en appliquant l'algorithme STC.
Comme cette dernière étape est commune à toutes les approches, on évalue
sa complexité à part.
Dans tout ce qui suit, on considère une image carrée de taille
$n \times n$.
-Les preuves de ces théorèmes sont données en annexes~\ref{anx:preuve:cplxt}.
+Les preuves de ces théorèmes sont données dans~\cite{ccg15:ij}
-\begin{theorem}\label{th:cplxt:hugo}
-Le schéma HUGO a une complexité de l'ordre de
-$\theta(2 \times n^2(343^2 + \ln(n)))$
-\end{theorem}
-
-\begin{theorem}\label{th:cplxt:wow}
-Le schéma WOW a une complexité de l'ordre de
-$\theta(6n^4\ln(n) + n^2)$.
-\end{theorem}
-
-
-\begin{theorem}\label{th:cplxt:uniward}
-Le schéma UNIWARD a une complexité dont l'ordre est supérieur à
+\begin{restatable}[Complexité d'algorithmes de stéganographie]{theorem}{theocplstegano}
+\label{th:cplxt:stegano}
+\begin{itemize}
+\item Le schéma HUGO a une complexité de l'ordre de $\theta(2 \times n^2(343^2 + \ln(n)))$
+\item Les schémas WOW et UNIWARD ont une complexité de l'ordre de
$\theta(6n^4\ln(n) + n^2)$.
-\end{theorem}
-
-\begin{theorem}\label{th:cplxt:stabylo}
-Le schéma STABYLO a une complexité dont l'ordre est
-$\theta((5^3+4T+1)n^2)$.
-\end{theorem}
-
+\item Le schéma STABYLO a une complexité dont l'ordre est $\theta((5^3+4T+1)n^2)$.
+\end{itemize}
+\end{restatable}
D'après~\cite{DBLP:journals/tifs/FillerJF11}, la complexité de
STC est le l'ordre de $\theta(2^h.n)$ où $h$
-est la taille de la matrice dupliquée. Cett complexité linéaire
+est la taille de la matrice dupliquée. Cette complexité linéaire
est donc négligeable par rapport au reste.
\begin{center}
\includegraphics[scale=0.4]{images/complexity}
\end{center}
-\caption{Evaluation de la complexité de WOW/UNIWARD, HUGO et STABYLO}
+\caption{Évaluation de la complexité de WOW/UNIWARD, HUGO et STABYLO}
\label{fig:compared}
\end{figure}
Le schéma STABYLO a été systématiquement comparé à HUGO,
EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720}, WOW et UNIWARD
-pour les stratégies fixes (10\%) et adaptives.
+pour les stratégies fixes (10\%) et adaptatives.
Pour établir la valeur de cette dernière stratégie, le filtre de Canny a été
paramétré avec une valeur de $T=3$.
-Lorsque $b$ vaut 7, la taile moyenne du message pouvant être embarqué est de
+Lorsque $b$ vaut 7, la taille moyenne du message pouvant être embarqué est de
16,445, \textit{i.e.}, un taux d'embarquement moyen de 6,35\%.
Pour chaque image, le nombre de bits embarqué par STABYLO est mémorisé et il
est demandé à chacun des autres schémas d'embarquer ce même nombre de bits.
\hline
Schéma & \multicolumn{3}{c|}{STABYLO} & \multicolumn{2}{c|}{HUGO}& \multicolumn{2}{c|}{EAISLSBMR} & \multicolumn{2}{c|}{WOW} & \multicolumn{2}{c|}{UNIWARD}\\
\hline
-Strétégie & fixe & \multicolumn{2}{c|}{adapt. ($\approx$6.35\%)} & fixe & adapt. & fixe & adapt. & fixe & adapt. & fixe & adapt. \\
+Stratégie & fixe & \multicolumn{2}{c|}{adapt. ($\approx$6.35\%)} & fixe & adapt. & fixe & adapt. & fixe & adapt. & fixe & adapt. \\
\hline
Ratio & 10\% & +STC(7) & +STC(6) & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\% & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\%\\
\hline
\end{tabular}
\end{small}
\end{center}
-\caption{Steganalyse de STABYLO\label{table:steganalyse}.}
+\caption{Stéganalyse de STABYLO\label{table:steganalyse}.}
\end{table*}
-Etant considéré comme le plus exact
+Étant considéré comme le plus exact
stéganalyseur dans le domaine spatial,
Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12}
a été exécuté avec les caractéristiques