]> AND Private Git Repository - hdrcouchot.git/blobdiff - oxford.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
la veille
[hdrcouchot.git] / oxford.tex
index 6fbda16cd2c0e28f09748468a1d0c98dceab2d58..ae247ee4e906e2667d70d2f21a8e5d5ca57ac26e 100644 (file)
@@ -1,14 +1,28 @@
-\JFC{Dire que c'est une synthèse du chapitre 22 de la thèse de Tof}
-\JFC{Dire qu'on est d'abord binaire, puisqu'on étend ceci à un message
-récupérable}
+La propriété de transitivité des fonctions chaotiques est à l'origine du marquage de documents numériques: grâce à cette propriété, la marque est diffusée 
+sur tout le support. Ainsi, de tout média, même tronqué,
+on peut la réextraire.
+Dans ce chapitre, le processus d'embarquement d'un message dans 
+un média est formalisé en section~\ref{sec:watermarking:formulation}.
+La sécurité des approches de watermarking est étudiée selon deux critères:
+probabiliste d'une part (section~\ref{sec:watermarking:security:probas}) 
+et chaotique (section~\ref{sec:watermarking:security:chaos}) d'autre part.
+Une proposition d'embarquement dans le domaine fréquentiel est abordée
+en section~\ref{sec:watermarking:frequentiel}.
 
 
+On remarque cependant que l'algorithme formalisé dans ces sections ne permet
+d'embarquer \textit{in fine} qu'un bit qui est vrai si l'image est marquée 
+et faux dans le cas contraire. 
+Il ne permet pas d'extraire le contenu du message initial à partir de
+l'image marquée. La section~\ref{sec:watermarking:extension}
+propose une solution à ce problème.
 
 
-This section has focused on security with regards to probabilistic behaviors. 
-Next section studies it in the perspective of topological ones.
+Les trois premières sections de ce chapitre sont une reformulation 
+du chapitre 22 de~\cite{guyeuxphd}. Elles ont été publiées à~\cite{bcg11:ij}.
+L'extension a quant à elle été publiée dans~\cite{bcfg+13:ip}.
 
 
 
 
 
 
-\section{Processus de marquage binaire}
+\section{Processus de marquage binaire}\label{sec:watermarking:formulation}
 
 Par la suite, le message numérique qu'on cherche à embarquer est 
 noté $y$ et le support dans lequel se fait l'insertion est noté $x$. 
 
 Par la suite, le message numérique qu'on cherche à embarquer est 
 noté $y$ et le support dans lequel se fait l'insertion est noté $x$. 
@@ -16,7 +30,7 @@ noté $y$ et le support dans lequel se fait l'insertion est noté $x$.
 Le processus de marquage est fondé sur les itérations unaires d'une fonction 
 selon une stratégie donnée.  Cette fonction et cette stratégie 
 sont paramétrées par un entier naturel permettant à la méthode d'être
 Le processus de marquage est fondé sur les itérations unaires d'une fonction 
 selon une stratégie donnée.  Cette fonction et cette stratégie 
 sont paramétrées par un entier naturel permettant à la méthode d'être
-appliquable à un média de n'importe quelle taille.
+applicable à un média de n'importe quelle taille.
 On parle alors respectivement de \emph{mode} et d'\emph{adapteur de stratégies} 
 
 \subsection{Embarquement}
 On parle alors respectivement de \emph{mode} et d'\emph{adapteur de stratégies} 
 
 \subsection{Embarquement}
@@ -38,13 +52,13 @@ dans lui même.
   de  $\Nats$ dans l'ensemble des séquences d'entiers 
   qui associe à chaque entier naturel
   $\mathsf{N}$ la suite 
   de  $\Nats$ dans l'ensemble des séquences d'entiers 
   qui associe à chaque entier naturel
   $\mathsf{N}$ la suite 
-  $S \in  \llbracket 1, n\rrbracket^{\mathds{N}}$.
+  $S \in  [\mathsf{N}]^{\mathds{N}}$.
 \end{Def}
 
 
 On définit par exemple  l'adapteur CIIS (\emph{Chaotic Iterations with Independent Strategy})
 paramétré par $(K,y,\alpha,l) \in [0,1]\times [0,1] \times ]0, 0.5[ \times \mathds{N}$
 \end{Def}
 
 
 On définit par exemple  l'adapteur CIIS (\emph{Chaotic Iterations with Independent Strategy})
 paramétré par $(K,y,\alpha,l) \in [0,1]\times [0,1] \times ]0, 0.5[ \times \mathds{N}$
-qui associe à chque entier  $n \in \Nats$  la suite
+qui associe à chaque entier  $\mathsf{N} \in \Nats$  la suite
 $(S^t)^{t \in \mathds{N}}$ définie par:
  \begin{itemize}
  \item $K^0 = \textit{bin}(y) \oplus \textit{bin}(K)$: $K^0$ est le nombre binaire (sur 32 bits)
 $(S^t)^{t \in \mathds{N}}$ définie par:
  \begin{itemize}
  \item $K^0 = \textit{bin}(y) \oplus \textit{bin}(K)$: $K^0$ est le nombre binaire (sur 32 bits)
@@ -52,10 +66,10 @@ $(S^t)^{t \in \mathds{N}}$ définie par:
    entre les décompositions binaires sur 32 bits des réels $y$ et  $K$
    (il est aussi compris entre 0 et 1),
  \item $\forall t \leqslant l, K^{t+1} = F(K^t,\alpha)$,
    entre les décompositions binaires sur 32 bits des réels $y$ et  $K$
    (il est aussi compris entre 0 et 1),
  \item $\forall t \leqslant l, K^{t+1} = F(K^t,\alpha)$,
- \item $\forall t \leqslant l, S^t = \left \lfloor n \times K^t \right \rfloor + 1$,
+ \item $\forall t \leqslant l, S^t = \left \lfloor \mathsf{N} \times K^t \right \rfloor + 1$,
  \item $\forall t > l, S^t = 0$,
  \end{itemize}
  \item $\forall t > l, S^t = 0$,
  \end{itemize}
-où  est la fonction chaotique linéaire par morceau~\cite{Shujun1}.
+où $F$  est la fonction chaotique linéaire par morceau~\cite{Shujun1}.
 Les paramètres $K$ et $\alpha$ de cet adapteur de stratégie peuvent être vus
 comme des clefs. 
 On remarque que cette stratégie est unaire.
 Les paramètres $K$ et $\alpha$ de cet adapteur de stratégie peuvent être vus
 comme des clefs. 
 On remarque que cette stratégie est unaire.
@@ -70,24 +84,24 @@ Ceci se fait à l'aide d'une fonction de signification.
 
 \begin{Def}[Fonction de signification ]
 Une  \emph{fonction de signification } 
 
 \begin{Def}[Fonction de signification ]
 Une  \emph{fonction de signification } 
-est une fonction $u$ qui a toute 
+est une fonction $u$ qui à toute 
 séquence finie de bit $x$ associe la séquence 
 $(u^k(x))$ de taille $\mid x \mid$ à valeur dans les réels.
 Cette fonction peut dépendre du message $y$ à embarquer, ou non.
 \end{Def}
 
 séquence finie de bit $x$ associe la séquence 
 $(u^k(x))$ de taille $\mid x \mid$ à valeur dans les réels.
 Cette fonction peut dépendre du message $y$ à embarquer, ou non.
 \end{Def}
 
-Pour alléger le discours, par la suite, on nottera $(u^k(x))$ pour $(u^k)$ 
+Pour alléger le discours, par la suite, on notera $(u^k(x))$ pour $(u^k)$ 
 lorsque cela n'est pas ambigüe.
 lorsque cela n'est pas ambigüe.
-Il reste à partionner les bits  de $x$ selon qu'ils sont 
+Il reste à partitionner les bits  de $x$ selon qu'ils sont 
 peu, moyennement ou très significatifs. 
 
 \begin{Def}[Signification des bits]\label{def:msc,lsc}
 Soit $u$ une fonction de signification, 
 $m$ et  $M$ deux réels  t.q. $m < M$.  Alors:
 peu, moyennement ou très significatifs. 
 
 \begin{Def}[Signification des bits]\label{def:msc,lsc}
 Soit $u$ une fonction de signification, 
 $m$ et  $M$ deux réels  t.q. $m < M$.  Alors:
-$u_M$, $u_m$ et $u_p$ sont les vecteurs finis respectivements des 
+$u_M$, $u_m$ et $u_p$ sont les vecteurs finis respectivement des 
 \emph{bits les plus significatifs  (MSBs)} de $x$,
 \emph{bits les moins significatifs (LSBs)} de $x$ 
 \emph{bits les plus significatifs  (MSBs)} de $x$,
 \emph{bits les moins significatifs (LSBs)} de $x$ 
-\emph{bits passifs} of $x$ définis par:
+\emph{bits passifs} de $x$ définis par:
 \begin{eqnarray*}
   u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k 
     \geqslant M \textrm{ et }  k \le \mid x \mid \right) \\
 \begin{eqnarray*}
   u_M &=& \left( k ~ \big|~ k \in \mathds{N} \textrm{ et } u^k 
     \geqslant M \textrm{ et }  k \le \mid x \mid \right) \\
@@ -98,7 +112,7 @@ u^k \in ]m;M[ \textrm{ et }  k \le \mid x \mid \right)
 \end{eqnarray*}
  \end{Def}
 
 \end{eqnarray*}
  \end{Def}
 
-On peut alors définir une fonction de décompostion  
+On peut alors définir une fonction de décomposition  
 puis de recomposition pour un hôte $x$:
 
 
 puis de recomposition pour un hôte $x$:
 
 
@@ -117,7 +131,7 @@ avec
 La fonction qui associe $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
 pour chaque hôte $x$ est la  \emph{fonction de décomposition}, plus tard notée 
 $\textit{dec}(u,m,M)$ puisqu'elle est paramétrée par 
 La fonction qui associe $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$
 pour chaque hôte $x$ est la  \emph{fonction de décomposition}, plus tard notée 
 $\textit{dec}(u,m,M)$ puisqu'elle est paramétrée par 
-$u$, $m$ and $M$. 
+$u$, $m$ et $M$. 
 \end{Def} 
 
 
 \end{Def} 
 
 
@@ -132,7 +146,7 @@ $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p}) \in
 \mathfrak{B} 
 $ tel que
 \begin{itemize}
 \mathfrak{B} 
 $ tel que
 \begin{itemize}
-\item les ensembles $u_M$, $u_m$ et  $u_p$ forment une partition de  $[n]$;
+\item les ensembles $u_M$, $u_m$ et  $u_p$ forment une partition de  $[\mathsf{N}]$;
 \item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$ et $|u_p| = |\varphi_p|$.  
 \end{itemize}
 Soit la base canonique sur l'espace vectoriel $\mathds{R}^{\mid x \mid}$ composée des vecteurs 
 \item $|u_M| = |\varphi_M|$, $|u_m| = |\varphi_m|$ et $|u_p| = |\varphi_p|$.  
 \end{itemize}
 Soit la base canonique sur l'espace vectoriel $\mathds{R}^{\mid x \mid}$ composée des vecteurs 
@@ -171,12 +185,12 @@ On peut étendre l'algorithme dhCI~\cite{gfb10:ip} d'embarquement de message com
 
 \begin{Def}[Embarquement dhCI étendu]
  \label{def:dhCI:ext}
 
 \begin{Def}[Embarquement dhCI étendu]
  \label{def:dhCI:ext}
-Soit $\textit{dec}(u,m,M)$ une function de décomposition,
+Soit $\textit{dec}(u,m,M)$ une fonction de décomposition,
 $f$ un mode, 
 $\mathcal{S}$ un adapteur de stratégie,
 $x$ un hôte, 
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ 
 $f$ un mode, 
 $\mathcal{S}$ un adapteur de stratégie,
 $x$ un hôte, 
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ 
-sont image par  $\textit{dec}(u,m,M)$,
+son image par  $\textit{dec}(u,m,M)$,
 $q$ un entier naturel positif
 et $y$ un média numérique de taille $l=|u_m|$.
 
 $q$ un entier naturel positif
 et $y$ un média numérique de taille $l=|u_m|$.
 
@@ -187,7 +201,7 @@ $\hat{y}$ dans $x$, t. q.:
 \begin{itemize}
 \item le mode $f$ est instancié avec le paramètre $l=|u_m|$, engendrant la 
   fonction $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$;
 \begin{itemize}
 \item le mode $f$ est instancié avec le paramètre $l=|u_m|$, engendrant la 
   fonction $f_{l}:\Bool^{l} \rightarrow \Bool^{l}$;
-\item l'adapteur de stratégie $\mathcal{S}$ est intancié avec le paramètre
+\item l'adapteur de stratégie $\mathcal{S}$ est instancié avec le paramètre
 $y$, engendrant une stratégie $S_y \in [l]$;
 \item on itère la fonction $G_{f_l}$ en prenant la configuration
   initiale $(S_y,\phi_{m})$ selon le schéma défini 
 $y$, engendrant une stratégie $S_y \in [l]$;
 \item on itère la fonction $G_{f_l}$ en prenant la configuration
   initiale $(S_y,\phi_{m})$ selon le schéma défini 
@@ -203,34 +217,34 @@ La figure~\ref{fig:organigramme} synthétise la démarche.
 \centering
 %\includegraphics[width=8.5cm]{organigramme2.pdf}
 \includegraphics[width=8.5cm]{organigramme22}
 \centering
 %\includegraphics[width=8.5cm]{organigramme2.pdf}
 \includegraphics[width=8.5cm]{organigramme22}
-\caption{The dhCI dissimulation scheme}
+\caption{Le schéma de marquage dhCI}
 \label{fig:organigramme}
 \end{figure}
 
 
 
 
 \label{fig:organigramme}
 \end{figure}
 
 
 
 
-\subsection{Détection d'un media marqué}\label{sub:wmdecoding}
+\subsection{Détection d'un média marqué}\label{sub:wmdecoding}
 
 On caractérise d'abord ce qu'est un média marqué selon la méthode énoncée 
 à la section précédente. On considère que l'on connaît
 
 On caractérise d'abord ce qu'est un média marqué selon la méthode énoncée 
 à la section précédente. On considère que l'on connaît
-la marque à embarquer $y$, le support $x$ et que l'on a face à soit un média 
+la marque à embarquer $y$, le support $x$ et que l'on a face à soi un média 
 $z$.
 
 
 $z$.
 
 
-\begin{definition}[Média marqué]
-Soit $\textit{dec}(u,m,M)$ une fonction de décomposition
+\begin{Def}[Média marqué]
+Soit $\textit{dec}(u,m,M)$ une fonction de décomposition,
 $f$ un  mode, 
 $f$ un  mode, 
-$\mathcal{S}$ un adapteur de stratégie
+$\mathcal{S}$ un adapteur de stratégie,
 $q$ un entier naturel strictement positif,
 $y$ un média digital et soit  
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ l'image par 
 $\textit{dec}(u,m,M)$  du média  $x$. 
 Alors, $z$ est \emph{marqué} avec $y$ si l'image 
 $q$ un entier naturel strictement positif,
 $y$ un média digital et soit  
 $(u_M,u_m,u_p,\phi_{M},\phi_{m},\phi_{p})$ l'image par 
 $\textit{dec}(u,m,M)$  du média  $x$. 
 Alors, $z$ est \emph{marqué} avec $y$ si l'image 
-par $\textit{dec}(u,m,M)$ of $z$ is 
+par $\textit{dec}(u,m,M)$ de $z$ est 
 $(u_M,u_m,u_p,\phi_{M},\hat{y},\phi_{p})$, où
 $\hat{y}$ est le second membre de  $G_{f_l}^q(S_y,\phi_{m})$.
 $(u_M,u_m,u_p,\phi_{M},\hat{y},\phi_{p})$, où
 $\hat{y}$ est le second membre de  $G_{f_l}^q(S_y,\phi_{m})$.
-\end{definition}
+\end{Def}
 
 % Plusieurs stratégies peuvent être utilisées pour déterminer si une image $z$ 
 % est marquée, en particulier si l'image a été attaquée entre temps.
 
 % Plusieurs stratégies peuvent être utilisées pour déterminer si une image $z$ 
 % est marquée, en particulier si l'image a été attaquée entre temps.
@@ -240,40 +254,43 @@ $\hat{y}$ est le second membre de  $G_{f_l}^q(S_y,\phi_{m})$.
 
 
 Récemment~\cite{Cayre2005,Perez06} ont proposé des classes de sécurité pour le
 
 
 Récemment~\cite{Cayre2005,Perez06} ont proposé des classes de sécurité pour le
-marquage d'information. Parmis celles-ci, la stego-sécurité a été au centre 
+marquage d'information. Parmi celles-ci, la stego-sécurité a été au centre 
 des travaux puisqu'elle représente la classe la plus élevée dans le contexte où
 l'attaquant n'a accès qu'à l'hôte marqué $z$.
 
 Cette définition probabiliste est rappelée ci-après.
 des travaux puisqu'elle représente la classe la plus élevée dans le contexte où
 l'attaquant n'a accès qu'à l'hôte marqué $z$.
 
 Cette définition probabiliste est rappelée ci-après.
-Soit $\mathds{K}$ un ensemble de clefs, $p(X)$ un modèle porbabiliste 
+Soit $\mathds{K}$ un ensemble de clefs, $p(X)$ un modèle probabiliste 
 de $N_0$ hôtes,  et $p(Y|K)$ le modèle probabiliste de $N_0$ contenus marqués avec la 
 même clé $K$ et le même algorithme d'embarquement.
 
 de $N_0$ hôtes,  et $p(Y|K)$ le modèle probabiliste de $N_0$ contenus marqués avec la 
 même clé $K$ et le même algorithme d'embarquement.
 
-\begin{definition}[Stégo-Sécurité~\cite{Cayre2008}]
+\begin{Def}[Stégo-Sécurité~\cite{Cayre2008}]
 \label{Def:Stego-security} 
 \label{Def:Stego-security} 
-La fonction d'embarquement is \emph{stégo-sécure}
+La fonction d'embarquement est \emph{stégo-sécure}
 si la propriété $\forall K \in \mathds{K}, p(Y|K)=p(X)$ est établie.
 si la propriété $\forall K \in \mathds{K}, p(Y|K)=p(X)$ est établie.
-\end{definition}
+\end{Def}
 
 Il a déjà été démontré~\cite{guyeuxphd,gfb10:ip}
 que l'algorithme de marquage dont le mode est la fonction 
 négation est stégo-sécure. 
 Un des intérêts de l'algorithme présenté ici est qu'il est paramétré par un mode.
 Lorsque celui-ci a les même propriétés que celles vues pour la création de PRNG (\textit{i.e.} graphe des itérations fortement connexes et matrice de Markov doublement 
 
 Il a déjà été démontré~\cite{guyeuxphd,gfb10:ip}
 que l'algorithme de marquage dont le mode est la fonction 
 négation est stégo-sécure. 
 Un des intérêts de l'algorithme présenté ici est qu'il est paramétré par un mode.
 Lorsque celui-ci a les même propriétés que celles vues pour la création de PRNG (\textit{i.e.} graphe des itérations fortement connexes et matrice de Markov doublement 
-stochastique), on a un marquage qui peut être rendu stego-secure à $\epsilon$ pret,
-ce que précise le théorème suivant:
+stochastique), on a un marquage qui peut être rendu stégo-sécure à $\varepsilon$ près,
+ce que précise le théorème suivant. La preuve de ce théorème est donnée 
+en annexes~\ref{anx:marquage}.
+
 
 
-\begin{theorem}\label{th:stego}
-Soit  $\epsilon$ un nombre positif, 
+\begin{restatable}[$\varepsilon$-stego sécurité]{theorem}{theoremstegoscureepsilon}
+\label{th:stego}
+Soit  $\varepsilon$ un nombre positif, 
 $l$ un nombre de LSBs, 
 $X   \sim \mathbf{U}\left(\mathbb{B}^l\right)$,
 $l$ un nombre de LSBs, 
 $X   \sim \mathbf{U}\left(\mathbb{B}^l\right)$,
-un adapteur de stratégie uniformémement distribué indépendant de $X$
+un adapteur de stratégie uniformément distribué indépendant de $X$
 $f_l$ un mode tel que  
 $\textsc{giu}(f_l)$ est fortement connexe et la 
 matrice de Markov associée à  $f_l$ est doublement stochastique.
 Il existe un nombre $q$ d'itérations tel que 
 $f_l$ un mode tel que  
 $\textsc{giu}(f_l)$ est fortement connexe et la 
 matrice de Markov associée à  $f_l$ est doublement stochastique.
 Il existe un nombre $q$ d'itérations tel que 
-$|p(Y|K)- p(X)| < \epsilon$. 
-\end{theorem}
+$|p(Y|K)- p(X)| < \varepsilon$. 
+\end{restatable}
 
 
 
 
 
 
@@ -282,13 +299,13 @@ On rappelle uniquement la définition de chaos-sécurité
 introduite dans~\cite{guyeuxphd}.
 
 
 introduite dans~\cite{guyeuxphd}.
 
 
-\begin{definition}[Chaos-sécurité]
+\begin{Def}[Chaos-sécurité]
 \label{DefinitionChaosSecure}
 Un schéma de marquage $S$ est chaos-sécure sur un espace topologique
 $(\mathcal{X},\tau)$
 si sa version itérative 
 \label{DefinitionChaosSecure}
 Un schéma de marquage $S$ est chaos-sécure sur un espace topologique
 $(\mathcal{X},\tau)$
 si sa version itérative 
-a un comprtement chaotique sur celui-ci.
-\end{definition}
+a un comportement chaotique sur celui-ci.
+\end{Def}
 
 Tout repose ainsi sur la capacité que l'on a à produire des fonctions 
 dont le graphe des itérations unaires sera fortement connexe.
 
 Tout repose ainsi sur la capacité que l'on a à produire des fonctions 
 dont le graphe des itérations unaires sera fortement connexe.
@@ -308,43 +325,43 @@ x_i \oplus x_{i-1} \textrm{ si $i$ est pair}
 \right.
 \end{equation}\label{eq:fqq}
 
 \right.
 \end{equation}\label{eq:fqq}
 
-on peut déduire imédiatement du théorème~\ref{th:Adrien} (chap.~\ref{chap:carachaos})
+on peut déduire immédiatement du théorème~\ref{th:Adrien} (chap.~\ref{chap:carachaos})
 que le graphe $\textsc{giu}(f_l)$ est fortement connexe.
 que le graphe $\textsc{giu}(f_l)$ est fortement connexe.
-La preuve de double-stochasiticité de la matrice associée 
-à $f_l$ est donnée en annexes~\ref{anx:marquage:dblesto}.
-On dispose ainsi d'un nouvel algorithme de marquage $\epsilon$-stego-secure et 
+La preuve de double-stochasticité de la matrice associée 
+à $f_l$ est donnée en annexe~\ref{anx:marquage:dblesto}.
+On dispose ainsi d'un nouvel algorithme de marquage $\varepsilon$-stégo-sécure et 
 chaos-sécure.
 
 chaos-sécure.
 
-\section{Applications aux domaines fréquentiels}
+\section{Applications aux domaines fréquentiels}\label{sec:watermarking:frequentiel}
 Le schéma d'algorithme présenté dans ce chapitre a été appliqué au marquage d'images 
 dans les coefficients DCT et les DWT.
 
 \subsection{Fonction de signification pour l'embarquement dans les DCT} 
  
 Le schéma d'algorithme présenté dans ce chapitre a été appliqué au marquage d'images 
 dans les coefficients DCT et les DWT.
 
 \subsection{Fonction de signification pour l'embarquement dans les DCT} 
  
-On considère un hôte $x$ de taille $H \times L$ dans le domaine fréqentiel DCT.
+On considère un hôte $x$ de taille $H \times L$ dans le domaine fréquentiel DCT.
 Dans chaque bloc de taille $8\times 8$, à chaque bit
 la fonction de signification $u$ associe
 
 \begin{itemize}
 Dans chaque bloc de taille $8\times 8$, à chaque bit
 la fonction de signification $u$ associe
 
 \begin{itemize}
-\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient dont les coordonnées appartiennent à $\{(1,1),(2,1),(1,2)\}$,
-\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur 
+\item 1 si c'est un bit apparaissant dans la représentation binaire de la valeur d'un coefficient dont les coordonnées appartiennent à $\{(1,1),(2,1),(1,2)\}$,
+\item 1 si c'est un bit apparaissant dans la représentation binaire de la valeur 
   d'un coefficient dont les 
   coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui n'est pas un des trois 
   bits de poids faible de cette représentation,
   d'un coefficient dont les 
   coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui n'est pas un des trois 
   bits de poids faible de cette représentation,
-\item -1 si c'est un bit appraissant dans la représentation binaire
+\item -1 si c'est un bit apparaissant dans la représentation binaire
 de la valeur d'un coefficient dont les 
   coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui est un des 
 de la valeur d'un coefficient dont les 
   coordonnées appartiennent à $\{(3,1),(2,2),(1,3)\}$ et qui est un des 
des trois bits de poids faible  de cette valeur,
+ trois bits de poids faible  de cette valeur,
 \item 0 sinon.
 \end{itemize}
 Le choix de l'importance de chaque coefficient est défini grâce aux seuils  
 $(m,M)=(-0.5,0.5)$ 
 \item 0 sinon.
 \end{itemize}
 Le choix de l'importance de chaque coefficient est défini grâce aux seuils  
 $(m,M)=(-0.5,0.5)$ 
-permetant d'engendrer les MSBs, LSBs, et bits passifs.
+permettant d'engendrer les MSBs, LSBs, et bits passifs.
 
 
 \subsection{Fonction de signification pour l'embarquement dans les DWT} 
 
 
 
 \subsection{Fonction de signification pour l'embarquement dans les DWT} 
 
-On considère un hôte dnas le domaine des DWT. La fonction de signification 
+On considère un hôte dans le domaine des DWT. La fonction de signification 
 se concentre sur les seconds niveaux de détail (\textit{i.e.}, LH2, HL2 et HH2).
 Pour chaque bit, on dit qu'il est peu significatif si c'est un des trois bits de 
 poids faible d'un coefficient de  LH2, HL2 ou de  HH2.
 se concentre sur les seconds niveaux de détail (\textit{i.e.}, LH2, HL2 et HH2).
 Pour chaque bit, on dit qu'il est peu significatif si c'est un des trois bits de 
 poids faible d'un coefficient de  LH2, HL2 ou de  HH2.
@@ -352,38 +369,38 @@ Formellement  à chaque bit
 la fonction de signification $u$ associe
 
 \begin{itemize}
 la fonction de signification $u$ associe
 
 \begin{itemize}
-\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LL2, 
-\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui n'est pas un des trois 
+\item 1 si c'est un bit apparaissant dans la représentation binaire de la valeur d'un coefficient de type LL2, 
+\item 1 si c'est un bit apparaissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui n'est pas un des trois 
   bits de poids faible de cette représentation,
   bits de poids faible de cette représentation,
-\item 1 si c'est un bit appraissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui est un des trois 
+\item 0 si c'est un bit apparaissant dans la représentation binaire de la valeur d'un coefficient de type LH2, HL2, HH2 et qui est un des trois 
   bits de poids faible de cette représentation,
   bits de poids faible de cette représentation,
-\item 0 sinon.
+\item -1 sinon.
 \end{itemize}
 Le choix de l'importance de chaque coefficient est encore défini grâce aux seuils  
 $(m,M)=(-0.5,0.5)$ 
 \end{itemize}
 Le choix de l'importance de chaque coefficient est encore défini grâce aux seuils  
 $(m,M)=(-0.5,0.5)$ 
-permetant d'engendrer les MSBs, LSBs, et bits passifs.
+permettant d'engendrer les MSBs, LSBs, et bits passifs.
 
 
 \subsection{Etude de robustesse}
 Cette partie synthétise une étude de robustesse de la démarche présentée ci-avant.
 Dans ce qui suit, {dwt}(neg), 
 {dwt}(fl), {dct}(neg), {dct}(fl) 
 
 
 \subsection{Etude de robustesse}
 Cette partie synthétise une étude de robustesse de la démarche présentée ci-avant.
 Dans ce qui suit, {dwt}(neg), 
 {dwt}(fl), {dct}(neg), {dct}(fl) 
-correpondent respectivement aux embarquements en fréquenciel 
+correspondant respectivement aux embarquements en fréquentiels 
 dans les domaines  DWT et  DCT 
 avec le mode de négation et celui issu de la fonction $f_l$
 dans les domaines  DWT et  DCT 
 avec le mode de négation et celui issu de la fonction $f_l$
-détaillé à l'équation~\ref{eq:fqq}.
+détaillée à l'équation~\ref{eq:fqq}.
 
 A chaque série d'expériences, un ensemble de 50 images est choisi aléatoirement 
 de la base du concours BOSS~\cite{Boss10}. Chaque hôte est une image 
 en $512\times 512$ en niveau de gris et la marque $y$ est une suite de
 4096 bits.
 
 A chaque série d'expériences, un ensemble de 50 images est choisi aléatoirement 
 de la base du concours BOSS~\cite{Boss10}. Chaque hôte est une image 
 en $512\times 512$ en niveau de gris et la marque $y$ est une suite de
 4096 bits.
-La resistance à la robustesse est évaluée en appliquant successivement
+La résistance à la robustesse est évaluée en appliquant successivement
 sur l'image marquée des attaques de découpage, de compression, de 
 transformations géométriques. 
 Si les différences entre  $\hat{y}$ and $\varphi_m(z)$.
 sur l'image marquée des attaques de découpage, de compression, de 
 transformations géométriques. 
 Si les différences entre  $\hat{y}$ and $\varphi_m(z)$.
-sont en desous d'un seuil(que l'on définit), 
+sont en dessous d'un seuil (que l'on définit), 
 l'image est dite marquée (et non marquée dans le cas contraire).
 l'image est dite marquée (et non marquée dans le cas contraire).
-Cette différence exprimée en pourcentage est rappellée pour chacune des ataques
+Cette différence exprimée en pourcentage est rappelée pour chacune des attaques
 à la figure~\ref{fig:atq:dhc}.
 
 
 à la figure~\ref{fig:atq:dhc}.
 
 
@@ -398,7 +415,7 @@ Cette différence exprimée en pourcentage est rappellée pour chacune des ataqu
   \subfigure[Compression JPEG 2000]{
     \includegraphics[width=0.45\textwidth]{atq-jp2}\label{Fig:atq:jp2:curves}
   }
   \subfigure[Compression JPEG 2000]{
     \includegraphics[width=0.45\textwidth]{atq-jp2}\label{Fig:atq:jp2:curves}
   }
-  \subfigure[Modification du contrast]{
+  \subfigure[Modification du contraste]{
     % \includegraphics[width=0.45\textwidth]{atq-contrast.pdf}\label{Fig:atq:cont:curve}}
     \includegraphics[width=0.45\textwidth]{atq-contrast}\label{Fig:atq:cont:curve}
   }
     % \includegraphics[width=0.45\textwidth]{atq-contrast.pdf}\label{Fig:atq:cont:curve}}
     \includegraphics[width=0.45\textwidth]{atq-contrast}\label{Fig:atq:cont:curve}
   }
@@ -414,13 +431,13 @@ Cette différence exprimée en pourcentage est rappellée pour chacune des ataqu
 \end{figure}
 
 
 \end{figure}
 
 
-\subsection{Evaluation de l'embarquement}\label{sub:roc}
+\subsection{Évaluation de l'embarquement}\label{sub:roc}
 Pour évaluer le seuil qui permet de dire avec la plus grande précision 
 si une image est marquée ou non, nous avons appliqué la démarche suivante.
 A partir d'un ensemble de 100 images du challenge BOSS, les trois 
 ensembles suivants sont construits: celui des images marquées $W$,
 Pour évaluer le seuil qui permet de dire avec la plus grande précision 
 si une image est marquée ou non, nous avons appliqué la démarche suivante.
 A partir d'un ensemble de 100 images du challenge BOSS, les trois 
 ensembles suivants sont construits: celui des images marquées $W$,
-celui contenant des imges marquées puis attaquée $\textit{WA}$,
-et celui des images uniquement attaquées $A$. Les attaques sont choisiés parmi 
+celui contenant des images marquées puis attaquée $\textit{WA}$,
+et celui des images uniquement attaquées $A$. Les attaques sont choisies parmi 
 celles données ci dessus.
 
 Pour chaque entier $t$ entre 5 et 55 
 celles données ci dessus.
 
 Pour chaque entier $t$ entre 5 et 55 
@@ -456,28 +473,28 @@ dans le domaine DWT.
 Pour les deux modes dans le domaine DCT, 
 la détection est optimale pour le seuil de 44\% 
 (correspondant aux points (0.05, 0.18) et (0.05, 0.28)).
 Pour les deux modes dans le domaine DCT, 
 la détection est optimale pour le seuil de 44\% 
 (correspondant aux points (0.05, 0.18) et (0.05, 0.28)).
-On peut alors donner des intervales de confiance pour les attaques évaluées.
-L'approche est résistante à:
+On peut alors donner des intervalles de confiance pour les attaques évaluées.
+L'approche est résistante:
 \begin{itemize}
 \begin{itemize}
-\item tous les découpages où le pourcentage est inférieur à 85\%;
-\item les compression dont le ratio est supérieur à 82\% dans le domaine 
+\item à tous les découpages où le pourcentage est inférieur à 85\%;
+\item aux compression dont le ratio est supérieur à 82\% dans le domaine 
   DWT et  67\% dans celui des DCT;
   DWT et  67\% dans celui des DCT;
-\item les modifications du contraste lorsque le renforcement est dans 
+\item aux modifications du contraste lorsque le renforcement est dans 
   $[0.76,1.2]$ dans le domaine DWT et  $[0.96,1.05]$ dans le domaine DCT;
   $[0.76,1.2]$ dans le domaine DWT et  $[0.96,1.05]$ dans le domaine DCT;
-\item toutes les rotations dont l'angle est inférieur à 20 degrés dans le domaine DCT et 
+\item à toutes les rotations dont l'angle est inférieur à 20 degrés dans le domaine DCT et 
   celles dont l'angle est inférieur à 13 degrés dans le domaine DWT.
 \end{itemize}
 
 
   celles dont l'angle est inférieur à 13 degrés dans le domaine DWT.
 \end{itemize}
 
 
-\section{Embarquons d'avantage qu'1 bit}
+\section{Embarquons davantage qu'1 bit}\label{sec:watermarking:extension}
 L'algorithme présenté dans les sections précédentes
 ne  permet de savoir, \textit{in fine}, 
 que si l'image est marquée ou pas. Cet algorithme ne permet pas
 de retrouver le contenu de la marque à partir de l'image marquée.
 L'algorithme présenté dans les sections précédentes
 ne  permet de savoir, \textit{in fine}, 
 que si l'image est marquée ou pas. Cet algorithme ne permet pas
 de retrouver le contenu de la marque à partir de l'image marquée.
-C'est l'bjectif de l'algorithme présenté dans cette section et introduit 
+C'est l'objectif de l'algorithme présenté dans cette section et introduit 
 dans~\cite{fgb11:ip}.
 dans~\cite{fgb11:ip}.
-On des raisons de lisibilité, il n'est pas 
-présenté pas dans le formalisme de la première section et
+Pour des raisons de lisibilité, il n'est pas 
+présenté dans le formalisme de la première section et
 est grandement synthétisé.
 Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
 est grandement synthétisé.
 Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
@@ -485,19 +502,19 @@ Il a cependant été prouvé comme étant chaos-sécure~\cite{fgb11:ip}.
 
 Commençons par quelques conventions de notations: 
 \begin{itemize}
 
 Commençons par quelques conventions de notations: 
 \begin{itemize}
-\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaire sur $[k]$;
+\item $\mathbb{S}_\mathsf{k}$ est l'ensemble des stratégies unaires sur $[k]$;
 \item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits
   représentant la marque;
 \item $m^0 \in \mathbb{B}^{\mathsf{P}}$ est un vecteur de $\mathsf{P}$ bits
   représentant la marque;
-\item comme précédement, 
+\item comme précédemment, 
   $x^0 \in \mathbb{B}^\mathsf{N}$ est le vecteurs des
    $\mathsf{N}$ bits sélectionnés où la marque est embarquée.
  \item $S_p \in \mathbb{S}_\mathsf{N}$ 
    est la \emph{stratégie de place} et définit quel 
    élément de $x$ est modifié à chaque itération;
   $x^0 \in \mathbb{B}^\mathsf{N}$ est le vecteurs des
    $\mathsf{N}$ bits sélectionnés où la marque est embarquée.
  \item $S_p \in \mathbb{S}_\mathsf{N}$ 
    est la \emph{stratégie de place} et définit quel 
    élément de $x$ est modifié à chaque itération;
-  \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de  choix}
+  \item $S_c \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de  choix}
     qui définit quel indice du vecteur de marque est embarqué à chaque 
     itération;
     qui définit quel indice du vecteur de marque est embarqué à chaque 
     itération;
-  \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \textbf{stratégie de mélange}
+  \item $S_m \in \mathbb{S}_\mathsf{P}$ est la \emph{stratégie de mélange}
     qui précise quel élément de la marque est inversé à chaque itération.
 \end{itemize}
 
     qui précise quel élément de la marque est inversé à chaque itération.
 \end{itemize}
 
@@ -516,28 +533,28 @@ Pour chaque $(n,i,j) \in
 \begin{array}{l}
 x_i^n=\left\{
 \begin{array}{ll}
 \begin{array}{l}
 x_i^n=\left\{
 \begin{array}{ll}
-x_i^{n-1} & \text{ if }S_p^n\neq i \\
-m_{S_c^n}^{n-1} & \text{ if }S_p^n=i.
+x_i^{n-1} & \text{ si }S_p^n\neq i \\
+m_{S_c^n}^{n-1} & \text{ si }S_p^n=i.
 \end{array}
 \right.
 \\
 \\
 m_j^n=\left\{
 \begin{array}{ll}
 \end{array}
 \right.
 \\
 \\
 m_j^n=\left\{
 \begin{array}{ll}
-m_j^{n-1} & \text{ if }S_m^n\neq j \\
+m_j^{n-1} & \text{ si }S_m^n\neq j \\
  & \\
  & \\
-\overline{m_j^{n-1}} & \text{ if }S_m^n=j.
+\overline{m_j^{n-1}} & \text{ si }S_m^n=j.
 \end{array}
 \right.
 \end{array}
 \right.
 \end{equation*}
 \end{array}
 \right.
 \end{array}
 \right.
 \end{equation*}
-%\end{definition}
+%\end{Def}
 \noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$.
 On impose de plus la contrainte suivante.
 Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots,  S^l_p\}$ 
 \noindent où $\overline{m_j^{n-1}}$ est la négation booléenne de $m_j^{n-1}$.
 On impose de plus la contrainte suivante.
 Soit $\Im(S_p) = \{S^1_p, S^2_p, \ldots,  S^l_p\}$ 
-l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés).  
-qui contient la liste des indices $i$, $1 \le i \le p$,
+l'ensemble de cardinalité $k \leq l$ (les doublons sont supprimés)  
+qui contient la liste des indices $i$, $1 \le i \le \mathsf{N}$,
 tels que $x_i$ a été modifié.
 On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots,  S^{d_k}_c\}$
 où  
 tels que $x_i$ a été modifié.
 On considère $\Im(S_c)_{|D}= \{S^{d_1}_c, S^{d_2}_c, \ldots,  S^{d_k}_c\}$
 où  
@@ -552,7 +569,7 @@ l'hôte et on obtient un contenu marqué.
 Sans attaque, le schéma doit garantir qu'un utilisateur qui dispose des bonnes 
 clefs de création des stratégies est capable d'extraire une marque et que 
 celle-ci est la marque insérée.
 Sans attaque, le schéma doit garantir qu'un utilisateur qui dispose des bonnes 
 clefs de création des stratégies est capable d'extraire une marque et que 
 celle-ci est la marque insérée.
-Ceci correspond respectivement aux propriétés de complétudes et de correction
+Ceci correspond respectivement aux propriétés de complétude et de correction
 de l'approche.
 L'étude de ces propriétés est l'objectif de la section qui suit.
 
 de l'approche.
 L'étude de ces propriétés est l'objectif de la section qui suit.
 
@@ -565,58 +582,64 @@ L'étude de ces propriétés est l'objectif de la section qui suit.
 
 On ne donne ici que le théorème. La preuve est placée en annexes~\ref{anx:preuve:marquage:correctioncompletue}.
 
 
 On ne donne ici que le théorème. La preuve est placée en annexes~\ref{anx:preuve:marquage:correctioncompletue}.
 
-\begin{theorem}
-La condition de l'algorithme de marquage est nécressaire et suffisante
+\begin{restatable}[Correction et complétude du marquage]{theorem}{marquagecorrectioncompl}
+La condition de l'algorithme de marquage est nécessaire et suffisante
 pour permettre l'extraction du message du média marqué.
 pour permettre l'extraction du message du média marqué.
-\end{theorem}
+\end{restatable}
 
 
-Sous ces hypothèes, on peut donc extraire un message.
+Sous ces hypothèse, on peut donc extraire un message.
 De plus,  le cardinal $k$ de  
 $\Im(S_p)$ est supérieur ou égal à  $\mathsf{P}$.
 Ainsi le bit  $j$ du message original $m^0$ peut être 
 De plus,  le cardinal $k$ de  
 $\Im(S_p)$ est supérieur ou égal à  $\mathsf{P}$.
 Ainsi le bit  $j$ du message original $m^0$ peut être 
-embarqué plusieur fois dans $x^l$. 
-Or, en compte le nombrede fois où ce  bit a été inversé dans 
+embarqué plusieurs fois dans $x^l$. 
+Or, en comptant le nombre de fois où ce  bit a été inversé dans 
 $S_m$, la valeur de $m_j$ peut se déduire en plusieurs places. 
 Sans attaque, toutes ces valeurs sont identiques 
 $S_m$, la valeur de $m_j$ peut se déduire en plusieurs places. 
 Sans attaque, toutes ces valeurs sont identiques 
-et le messageest obtenus immédiatement.
+et le message est obtenu immédiatement.
 Si attaque il y a, la valeur de $m_j$ peut s'obtenir en prenant la valeur 
 Si attaque il y a, la valeur de $m_j$ peut s'obtenir en prenant la valeur 
-moyenne de toutes les valeurs obtenues. On a donc la correction et la complétude.
+moyenne de toutes les valeurs obtenues. 
 
 \subsection{Détecter si le média est marqué}\label{sub:ci2:distances}
 On considère un média $y$ marqué par un message $m$. 
 Soit $y'$ une version altérée de $y$, c.-à-d. une version  
 
 \subsection{Détecter si le média est marqué}\label{sub:ci2:distances}
 On considère un média $y$ marqué par un message $m$. 
 Soit $y'$ une version altérée de $y$, c.-à-d. une version  
-où certains bits on été modifiés et soit
-$m'$ le message extrait de from $y'$. 
+où certains bits ont été modifiés et soit
+$m'$ le message extrait de   $y'$. 
 
 Pour mesurer la distance entre $m'$ et $m$, on 
 
 Pour mesurer la distance entre $m'$ et $m$, on 
-considère repsectivement 
-$M$ et $M$ l'ensemble des indices de $m$ et de $m'$ 
+considère respectivement 
+$M$ et $M'$ l'ensemble des indices de $m$ et de $m'$ 
 où $m_i$ vaut 1 et ou $m'_1$ vaut 1.
 
 Beaucoup de mesures de similarité~\cite{yule1950introduction,Anderberg-Cluster-1973,Rifqi:2000:DPM:342947.342970}, dépendent des ensembles
 $a$, $b$, $c$ et $d$ définis par
 $a = |M \cap M' |$, 
 $b = |M \setminus M' |$,
 où $m_i$ vaut 1 et ou $m'_1$ vaut 1.
 
 Beaucoup de mesures de similarité~\cite{yule1950introduction,Anderberg-Cluster-1973,Rifqi:2000:DPM:342947.342970}, dépendent des ensembles
 $a$, $b$, $c$ et $d$ définis par
 $a = |M \cap M' |$, 
 $b = |M \setminus M' |$,
-$c = |M' \setminus M|$, and
+$c = |M' \setminus M|$ et 
 $d = |\overline{M} \cap \overline{M'}|$
 
 Selon ~\cite{rifq/others03} la mesure de Fermi-Dirac $S_{\textit{FD}}$
 est celle dont le pouvoir de discrimination est le plus fort, 
 $d = |\overline{M} \cap \overline{M'}|$
 
 Selon ~\cite{rifq/others03} la mesure de Fermi-Dirac $S_{\textit{FD}}$
 est celle dont le pouvoir de discrimination est le plus fort, 
-c.-à-d. celui qui permet la séparation la plus forte entre des vecteurs 
-corrélés et des ceux qui ne le sont pas.
+c.-à-d. celle qui permet la séparation la plus forte entre des vecteurs 
+corrélés et des des vecteurs qui ne le sont pas.
 La distance entre $m$ et $m'$ est construite selon cette mesure 
 et produit un réel dans $[0;1]$. Si elle est inférieure à un certain 
 La distance entre $m$ et $m'$ est construite selon cette mesure 
 et produit un réel dans $[0;1]$. Si elle est inférieure à un certain 
-seuil (à définir), le média $y'$ est declaré 
+seuil (à définir), le média $y'$ est déclaré 
 comme marqué et le message doit pouvoir être extrait.
 
 comme marqué et le message doit pouvoir être extrait.
 
-\section{Etude de robustesse} 
+\subsection{Etude de robustesse}\label{sec:watermarking:robustesse} 
 La méthode d'expérimentation de robustesse appliquée à la section précédente 
 pourrait être réappliquée ici et nous pourrions obtenir, grâce aux courbes de 
 ROC une valeur seuil pour déterminer si une marque est présente ou pas.
 La méthode d'expérimentation de robustesse appliquée à la section précédente 
 pourrait être réappliquée ici et nous pourrions obtenir, grâce aux courbes de 
 ROC une valeur seuil pour déterminer si une marque est présente ou pas.
-
-Nous n'avons cependant pas poussé la démarche plus loin que de l'embarquement 
+Dans~\cite{bcfg+13:ip}, nous n'avons cependant pas poussé
+la démarche plus loin que dans la direction de l'embarquement 
 dans les bits de poids faible en spatial et l'on sait que ceci est 
 dans les bits de poids faible en spatial et l'on sait que ceci est 
-particulièrement peu robuste. Il reste ainsi à combiner cette approche avec 
-une sélection appropriés des bits à modifier pour qu'elle devienne intéressante.
+particulièrement peu robuste. 
+
 
 
+\section{Conclusion}
+Grâce à la formalisation du processus de watermarking par itérations discrètes, nous avons pu dans ce chapitre montrer que le processus possédait les propriétés
+attendues, à savoir stego-sécurité, chaos sécurité et une robustesse relative.
+Pour étendre le champ applicatif, nous avons proposé un second algorithme
+permettant de particulariser la marque à embarquer et donc à extraire.
+Le chapitre suivant s'intéresse au marquage, mais dans un autre domaine que celui des images.