+\JFC{chapeau à refaire}
+
+
+\subsection{Convergence de systèmes dynamiques discrets}
+
+Un système dynamique discret (SDD) est une fonction $f$
+du $n$-cube ($\{0,1\}^n$) dans lui même et un mode opératoire
+(parallèle, unaire, généralisé) qui peut être itéré
+en synchrone ou en asynchrone.
+Ils ont été étudiés à de maintes reprises~\cite{Rob95,Bah00,bcv02}.
+Pour chacun de ces modes, il existe des critères (suffisants) de convergence
+globale ou locale, souvent basés sur le fait que $f$ est
+est un opérateur contractant ans un espace.
+
+Les modes asynchrones ont une dynamique avec plus de liberté
+puisqu'ils autorisent chaque élément à modifier sa valeur avant
+de connaître les valeurs des autres éléments dont il dépend.
+Cependant, lorsque les calculs à effectuer sur certains n{\oe}uds
+sont coûteux en temps et/ou que les temps de communication sont élevés,
+ces modes peuvent présenter une convergence plus rapide que le cas synchrone.
+
+Dans~\cite{BCVC10:ir}, j'ai formalisé le mode des
+\emph{itérations mixes} (introduit dans~\cite{abcvs05})
+qui combine synchronisme et asynchronisme.
+Intuitivement, les n{\oe}uds qui pourraient engendrer des cycles dans
+les itérations asynchrones sont regroupés dans une même classe.
+Les noeuds à l'intérieur celle-ci groupe seront itérés de manière
+synchrone et les itérations asynchrones sont conservées entre les groupes.
+Pour gommer les différences entre les n{\oe}uds d'une même classe
+lorsqu'ils sont vus depuis des n{\oe}uds extérieurs, j'ai défini le
+mode des \emph{itérations mixes avec delais uniformes}.
+
+
+Grâce à cette formalisation, j'ai pu énoncer puis démontrer un théorème
+établissant que pour des conditions classiques de convergence des itérations
+synchrones d'une fonction $f$, les itérations mixes à délai uniforme
+convergent aussi vers le même point fixe.
+
+
+L'étude de convergence de SDD est simple à vérifier
+pratiquement pour le mode synchrone. Lorsqu'on introduit des stratégies
+pseudo périodiques pour les modes unaires et généralisées, le problème
+se complexifie. C'est pire encore lorsqu'on traite des itérations asynchrones
+et mixes prenant de plus en compte les délais.
+Des méthodes de simulation basées sur des stratégies et des délais générés aléatoirement ont déjà été présentées~\cite{BM99,bcv02}.
+Cependant, comme ces implantations ne sont pas exhaustives, elles ne sont intéressantes que lorsqu'elles fournissent un contre-exemple.
+Lorsqu'elles exhibent une convergence,
+cela ne permet que donner une intuition de convergence, pas une preuve.
+Autant que je sache, aucune démarche de preuve formelle automatique
+de convergence n'avait jamais été établie.
+
+
+J'ai montré dans~\cite{Cou10:ir} comment simuler
+des SDDs selon tous les modes pour établir
+formellement leur convergence (ou pas).
+Cette simulation est basée sur l'outil SPIN de \emph{Model-Checking}
+qui est une classe d'outils adressant le problème de vérifier automatiquement
+qu'un modèle vérifie une propriété donnée. Pour traiter le problème d'explosion
+combinatoire, les outils de cette classe
+appliquent des méthodes d'ordre partiel, d'abstraction,
+de quotientage selon une relation d'équivalence.
+
+Pour cela, j'ai présenté pour cela une démarche de traduction d'un SDD
+dans PROMELA qui est le langage de SPIN.
+J'ai énoncé puis prouvé ensuite la correction et la complétude de la démarche
+Des données pratiques comme la complexité et des synthèses d'expérimentation
+ont aussi été fournies.
+
+
+
+\subsection{Construction de fonctions chaotiques}
+Pr. Christophe Guyeux de l'équipe AND a proposé dans sa thèse~\cite{guyeuxphd}
+une caractérisation des fonctions $f$ de $\{0,1\}^n$ dans lui même
+dont les itérations sont chaotiques selon Devanney dans certains mode:
+il est nécessaire et suffisant que son graphe des itérations soit
+fortement connexe.
+J'ai proposé plusieurs méthodes de construction de
+fonctions ayant de tels graphes d'itérations~\cite{bcgr11:ip,chgw+14:oip}.
+
+Dans la première~\cite{bcgr11:ip},
+l'algorithme enlève des arcs et vérifie ensuite que
+la forte connexité est maintenue.
+Même si cet algorithme retourne toujours des fonctions dont le graphe
+des itérations est fortement connexe, il n'en est pas pour autant efficace
+car il nécessite une vérification à postériori de la
+forte connexité sur le graphe entier composé de $2^n$ sommets.
+La seconde méthode propose une solution à ce problème en présentant
+des conditions suffisantes sur un graphe à $n$ sommets
+qui permettent d'obtenir des graphes d'itérations fortement connexes.
+Ce théorème a aussi été prouvé dans~\cite{bcgr11:ip}
+et des instanciations effectives
+ont été produites.
+Une troisième méthode~\cite{chgw+14:oip} s'appuie sur les codes
+de Gray, ou de manière équivalente sur les cycles hamiltoniens du graphe des
+itérations: un cycle qui visite chaque n{\oe}ud exactement une fois est un
+\emph{cycle hamiltonien}.
+La démarche consiste à enlever du graphe un de ses cycles hamiltoniens dont
+la démarche de génération est un problème connu.
+
+Ces méthodes ont permis d'étendre à l'infini la classe des fonctions
+dont les itérations sont chaotiques.
+
+
+\subsection{Apprentissage par réseaux neuronaux}
+Nous disposons grâce aux travaux présentés à la section précédente d'un grand
+nombre de fonctions dont les itérations sont chaotiques.
+Nous avons entrepris d'étudier ces itérations et plus particulièrement leur
+apprentissage par un réseau de neurones.
+J'ai notamment pu contribuer à montrer pratiquement qu'il
+est très difficile (voir impossible) de les prédire
+à l'aide de tels outils d'intelligence artificielle~\cite{bcgs12:ij}.
+
+
+Nous nous sommes attaqués à un problème physique d'optimisation de
+l'écoulement d'un flux d'air le long d'un véhicule.
+Ce flux peut être modifié si l'on active des injecteurs d'air placés
+par exemple sur le becquet du véhicule.
+Le flux d'air peut être modélisé à l'aide d'équations de Navier-Stokes
+dont on ne connaît pas de méthode analytique de résolution.
+De plus, le nombre de Reynolds calculé dans cette situation fait apparaître
+que le régime est extrêment turbulent, donc difficile à prévoir.
+Nous avons souhaité
+continuer nos expériences d'apprentissage à l'aide
+de réseau de neurones dans ce contexte~\cite{cds12:ip,cds13:ij}.
+
+Il est apparu comme judicieux de mémoriser les configurations
+représentant l'état des actionneurs à l'aide de nombres binaires.
+De plus les codes de Gray, dont deux mots adjacents ne diffèrent que d'un
+bit se sont présentés comme une des manière de mémoriser les sorties du
+réseau de neuronnes comme un seul nombre binaire.
+Quand on sait que trouver un chemin hamiltonien (comme étudié dans la partie précédente) dans un
+$n$-cube revient à trouver un code
+de Gray dans un mot de $n$-bits. Les compétences acquises lors du travail
+sur les chemins hamiltoniens ont ainsi pu être réutilisées et approfondies.
+Les résultats pratiques quant à l'utilisation de ces codes ce sont cependant
+révélés comme moins pertinents que l'utilisation de $n$ sorties.
+
+\subsection{Génération de nombres pseudo-aléatoires}
+
+Plein de fonctions chaotiques : cependant chaos n'est pas aléatoire et pseudo
+aléatoire.
+
+Condition nécessaire et suffisante : matrice de Markov doublement sotchastique
+
+méthode 1 : génération de fonction chaotiques par théorème FCT puis
+filtrage de celles qui sont doublement stochastiques
+
+méthode 2 : directe par suppression de cycles hamiltonien
+
+Evaluation statistique
+
+Mesure de la qualité (stoping time)
+
+
+\subsection{Masquage d'information}
+
+Formalisation de la méthode
+
+
+
+
+\subsection{Application à la génomique}
+
+Core génome
+
+
+
+\subsection*{Publications issues de ces recherches}