]> AND Private Git Repository - hdrcouchot.git/blobdiff - 15RairoGen.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
la veille
[hdrcouchot.git] / 15RairoGen.tex
index c1cf7d310f8d3cf34b708214996e76a390768986..6832d33b0bc2c5aeb337274a438e1a220745248d 100644 (file)
@@ -31,8 +31,9 @@ Réduire ces critiques est l'objectif de nombreux travaux de recherche reportés
 
 
 Parmi les suites simples classiquement embarquées dans les CPRNGs, on trouve principalement
-la suite logistique et 
-la suite de Hénon. La suite logistique~\cite{may1976simple} est définie de $[0;1]$ dans lui même par $x_{t+1} = r \times x_t(1-x_t)$ 
+la suite logistique,  
+la suite de Hénon. 
+La suite logistique~\cite{may1976simple} est définie de $[0;1]$ dans lui même par $x_{t+1} = r \times x_t(1-x_t)$ 
 avec $x_0 \in [0;1]$ et $3,57<r<4,0$.
 La suite de Hénon~\cite{henon1976two} de $A \times B$ dans lui même, avec $A$ et $B$ deux sous-ensembles de $\R$, 
 est définie par  
@@ -65,13 +66,24 @@ $i \in \dfrac{\Z}{L\Z}$,
 $f$ est une adaptation de la suite logistique au cas discret,
 la graine $(X_0(0),\dots, X_0(L-1))$ et la pondération $\varepsilon$ sont fournies par l'utilisateur.
  
+
+René Lozi a aussi étudié la construction de PRNGs en couplant 
+des suites de Lozi~\cite{espinelrojas:hal-00622989} (qui sont une variation des suites de Hénon: $x^2_t$ est remplacé par $| x_t|$),
+la suite tente~\cite{DBLP:journals/ijbc/Lozi12} et en extrayant des 
+sous-suites pour construire la sortie du PRNG~\cite{lozi:hal-00813087}. 
+
+
 Certaines équations différentielles ont été à la base de PRNGs chaotiques. 
 On pense aux équations de Lorenz~\cite{Lorenz1963}, à celles de Rössler~\cite{Rossler1976397}\ldots
 Celles-ci ont par exemple embarquées dans les PRNG dans les articles~\cite{Silva:2009:LLP:1592409.1592411}
 et~\cite{mansingka2013fibonacci} respectivement.
 
 
-\section{ Nombres pseudo-aléatoires construits par itérations unaires}\label{sub:prng:algo}
+
+
+\section{Nombres pseudo-aléatoires construits par itérations unaires}\label{sub:prng:algo}
 
 
 
@@ -351,11 +363,11 @@ ait une distribution suffisamment proche de la distribution uniforme.
 On énonce directement le théorème suivant dont la preuve est donnée en annexe~\ref{anx:generateur}.
 
 \begin{restatable}[Uniformité de la sortie de l'algorithme~\ref{CI Algorithm}]{theorem}{PrngCIUniforme}\label{thm:prng:u}
-  Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son 
+  Soit $f: \Bool^{\mathsf{N}} \rightarrow \Bool^{\mathsf{N}}$, $\textsc{giu}(f)$ son 
   graphe d'itérations , $\check{M}$ sa matrice d'adjacence
   et $M$ une matrice  $2^n\times 2^n$  
   définie par 
-  $M = \dfrac{1}{n} \check{M}$.
+  $M = \dfrac{1}{\mathsf{N}} \check{M}$.
   Si $\textsc{giu}(f)$ est fortement connexe, alors 
   la sortie du générateur de nombres pseudo-aléatoires détaillé par 
   l'algorithme~\ref{CI Algorithm} suit une loi qui 
@@ -379,22 +391,22 @@ Expliquons enfin comment a été calculé le nombre de la troisième
 colonne utilisé comme le paramètre $b$ 
 dans l'algorithme~\ref{CI Algorithm}.
 
-Soit $e_i$ le $i^{\textrm{ème}}$ vecteur de la base canonique de $\R^{2^{n}}$. 
-Chacun des éléments $v_j$, $1 \le j \le 2^n$, 
+Soit $e_i$ le $i^{\textrm{ème}}$ vecteur de la base canonique de $\R^{2^{\mathsf{N}}}$. 
+Chacun des éléments $v_j$, $1 \le j \le 2^{\mathsf{N}}$, 
 du vecteur $e_i M_f^t$ représente la probabilité 
 d'être dans la configuration $j$ après $t$ étapes du processus de Markov 
 associé à $\textsc{giu}(f)$ en partant de la configuration $i$.   
 Le nombre $\min \{
  t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
 \}$ représente le plus petit nombre d'itérations où la distance de 
-ce vecteur au vecteur $\pi=(\frac{1}{2^n},\ldots,\frac{1}{2^n})$
+ce vecteur au vecteur $\pi=(\frac{1}{2^{\mathsf{N}}},\ldots,\frac{1}{2^{\mathsf{N}}})$
 -- autrement dit, où la déviation par rapport à la distribution uniforme --
  est inférieure 
 à $10^{-4}$. En prenant le max pour tous les $e_i$, on obtient une valeur pour
  $b$. 
 Ainsi, on a 
 \begin{equation}
-b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket} 
+b = \max\limits_{i \in \llbracket 1, 2^{\mathsf{N}} \rrbracket} 
 \left\{
 \min \left\{
  t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
@@ -527,7 +539,7 @@ $F_{{f_u},p_i} :  \mathds{B}^\mathsf{N} \times [\mathsf{N}]^{p_i}
 \rightarrow \mathds{B}^\mathsf{N}$ définie par
 
 $$
-F_{f_u,p_i} (x,(u^0, u^1, \hdots, u^{p_i-1}))  \mapsto 
+F_{f_u,p_i} (x,(u^0, u^1, \hdots, u^{p_i-1}))  = 
 F_{f_u}(\hdots (F_{f_u}(F_{f_u}(x,u^0), u^1), \hdots), u^{p_i-1}).
 $$
 
@@ -558,7 +570,7 @@ sur la seconde.
 Ainsi, les  sorties  $(y^0, y^1, \hdots )$ produites par le générateur détaillé dans 
 l'algorithme~\ref{CI Algorithm}
 sont les premiers  composants des itérations $X^0 = (x^0, (u,v))$ et $\forall n \in \mathds{N}, 
-X^{n+1} = G_{f_u,\mathcal{P}}(X^n)$ dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ où
+X^{n+1} = G_{f_u,\mathcal{P}}(X^{\mathsf{N}})$ dans $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ où
 $G_{f_u,\mathcal{P}}$  est définie par: