]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
plan
[hdrcouchot.git] / main.tex
index a31f0bd8962debdbd302597e10104ef33fd924cf..9713260e28e93c4b290b67156c9f656f8c122c6d 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -16,6 +16,8 @@
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
+\usepackage{multirow}
+\usepackage{algorithm2e}
 %\declaretheorem{theorem}
 
 %%--------------------
 %\declaretheorem{theorem}
 
 %%--------------------
 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
-\newcommand{\Sec}[1]{Sect\,\ref{#1}}
+\newcommand{\Sec}[1]{Section\,\ref{#1}}
 \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
 \newcommand{\Alg}[1]{Algorithme~\ref{#1}}
 \newcommand{\Tab}[1]{Tableau~\ref{#1}}
 \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
 \newcommand{\Alg}[1]{Algorithme~\ref{#1}}
 \newcommand{\Tab}[1]{Tableau~\ref{#1}}
@@ -139,18 +141,19 @@ Blabla blabla.
 
 \mainmatter
 
 
 \mainmatter
 
-\part{Système Booléens}
+\part{Réseaux Discrets}
 
 
-\chapter{Iterations discrètes de Systèmes Dynamiques booléens}
+\chapter{Iterations discrètes de réseaux booléens}
+\JFC{chapeau à refaire}
 \section{Formalisation}
 \input{sdd}
 
 \section{Formalisation}
 \input{sdd}
 
-
 \section{Combinaisons synchrones et asynchrones}
 \input{mixage}
 
 \section{Combinaisons synchrones et asynchrones}
 \input{mixage}
 
-
 \section{Conclusion}
 \section{Conclusion}
+\JFC{Conclusion à refaire}
+
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 Dans ce chapitre, nous avons exposé comment construire un mode combinant les
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 Dans ce chapitre, nous avons exposé comment construire un mode combinant les
@@ -160,7 +163,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 
 
 
 
 
 
-\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de  convergence de systèmes booléens}\label{chap:promela}
+\chapter{Preuve automatique de  convergence}\label{chap:promela}
 \input{modelchecking}
 
 
 \input{modelchecking}
 
 
@@ -171,8 +174,9 @@ de l'asynchronisme en terme de vitesse de convergence.
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
-\chapter{Characterisation des systèmes 
-  discrets chaotiques}
+\chapter[Caracterisation des systèmes 
+  discrets chaotiques]{Caracterisation des systèmes 
+  discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
 
 La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
@@ -185,28 +189,71 @@ On montre qu'on a des résultats similaires.
 \label{subsec:Devaney}
 \input{devaney}
 
 \label{subsec:Devaney}
 \input{devaney}
 
-\section{Schéma unaire}
+\section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
 \section{Schéma généralisé}
 \input{15TSI}
 
 
 \input{12TIPE}
 
 \section{Schéma généralisé}
 \input{15TSI}
 
 
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}\label{sec:11FCT}
+\input{11FCT} 
 
 \chapter{Prédiction des systèmes chaotiques}
 
 \chapter{Prédiction des systèmes chaotiques}
+\input{chaosANN}
+
 
 
-13 JournalMichel
 
 
 
 
+\part{Applications à la génération de nombres pseudo aléatoires}
 
 
+\chapter{Caractérisation des générateurs chaotiques}
+\input{15RairoGen}
 
 
+\chapter{Fonctions dont les graphes 
+  $\textsc{giu}(f)$ 
+  $\textsc{gig}(f)$ 
+  sont fortement connexes}
+% Secrypt 14
+% TSI 2015
 
 
+\chapter{Quantifier l'écart par rapport à la distribution uniforme} 
+%15 Rairo
 
 
 
 
 
 
+\part{Conclusion et Perspectives}
+
+\JFC{Perspectives pour SDD->Promela}
+Among drawbacks of the method,  one can argue that bounded delays is only 
+realistic in practice for close systems. 
+However, in real large scale distributed systems where bandwidth is weak, 
+this restriction is too strong. In that case, one should only consider that 
+matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
+for all $i$, $j$, $1 \le i \le j \le n$,  we have$
+\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
+One challenge of this work should consist in weakening this constraint. 
+We plan as future work to take into account other automatic approaches 
+to discharge proofs notably by deductive analysis~\cite{CGK05}. 
+
+\JFC{Perspective ANN}
+
+In  future  work we  intend  to  enlarge  the comparison  between  the
+learning   of  truly   chaotic  and   non-chaotic   behaviors.   Other
+computational intelligence tools such  as support vector machines will
+be investigated  too, to  discover which tools  are the  most relevant
+when facing a truly chaotic phenomenon.  A comparison between learning
+rate  success  and  prediction  quality will  be  realized.   Concrete
+consequences in biology, physics, and computer science security fields
+will then be stated.
+Ajouter lefait que le codede gray n'est pas optimal.
+On pourrait aussi travailler à établir un classement qui préserverait 
+le fait que deux configurations voisines seraient représentées 
+par deux entiers voisins.
+
+
 
 
-% \part{Conclusion et Perspectives}
 
 % \chapter{Conclusion}
 
 
 % \chapter{Conclusion}
 
@@ -230,31 +277,28 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien)
 \chapter{Preuves sur les systèmes chaotiques}
 
 
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
 \input{annexecontinuite.tex}
 
 
 \input{annexecontinuite.tex}
 
 
-
-
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
 \input{caracunaire.tex}
 
 
 \input{caracunaire.tex}
 
 
-\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise}
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
 
 
 \input{preuveDistanceGeneralisee}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
 \input{caracgeneralise.tex}
 
 
 \input{caracgeneralise.tex}
 
 
-
-
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}
 
 
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
 \input{annexesccg}
 
 
-
+\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
+\input{annexePreuveDistribution}
 
 \backmatter
 
 
 \backmatter