%\usepackage[font=footnotesize]{subfig}
\usepackage[utf8]{inputenc}
\usepackage{thmtools, thm-restate}
+\usepackage{multirow}
+\usepackage{algorithm2e}
%\declaretheorem{theorem}
%%--------------------
%%--------------------
%% Set the author of the HDR
-\addauthor[first.name@utbm.fr]{First}{Name}
+\addauthor[couchot@femto-st.fr]{Jean-François}{Couchot}
+
%%--------------------
%% Add a member of the jury
\newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
\newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
\newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
-\newcommand{\Sec}[1]{Sect\,\ref{#1}}
+\newcommand{\Sec}[1]{Section\,\ref{#1}}
\newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
\newcommand{\Alg}[1]{Algorithme~\ref{#1}}
\newcommand{\Tab}[1]{Tableau~\ref{#1}}
\newcommand{\dom}[0]{\ensuremath{\textit{dom}}}
\newcommand{\eqNode}[0]{\ensuremath{{\mathcal{R}}}}
+
+\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}}
+\def \top {1.8}
+\def \topt {2.3}
+\def \P {\mathbb{P}}
+\def \ov {\overline}
+\def \ts {\tau_{\rm stop}}
+
+
\newtheorem{theorem}{Théorème}
\newtheorem{lemma}{Lemme}
+\newtheorem{corollary}{Corollaire}
\newtheorem*{xpl}{Exemple}
\newtheorem*{Proof}{Preuve}
\newtheorem{Def}{Définition}
\mainmatter
-\part{Système Booléens}
+\part{Réseaux Discrets}
-\chapter{Iterations discrètes de Systèmes Dynamiques booléens}
+\chapter{Iterations discrètes de réseaux booléens}
+\JFC{chapeau à refaire}
\section{Formalisation}
\input{sdd}
-
\section{Combinaisons synchrones et asynchrones}
\input{mixage}
-
\section{Conclusion}
+\JFC{Conclusion à refaire}
+
Introduire de l'asynchronisme peut permettre de réduire le temps
d'exécution global, mais peut aussi introduire de la divergence.
Dans ce chapitre, nous avons exposé comment construire un mode combinant les
-\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de convergence de systèmes booléens}\label{chap:promela}
+\chapter{Preuve automatique de convergence}\label{chap:promela}
\input{modelchecking}
\part{Des systèmes dynamiques discrets
au chaos}
-\chapter{Characterisation des systèmes
- discrets chaotiques}
+\chapter[Caracterisation des systèmes
+ discrets chaotiques]{Caracterisation des systèmes
+ discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
La première section rappelle ce que sont les systèmes dynamiques chaotiques.
Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE),
\label{subsec:Devaney}
\input{devaney}
-\section{Schéma unaire}
+\section{Schéma unaire}\label{sec:TIPE12}
\input{12TIPE}
\section{Schéma généralisé}
\input{15TSI}
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}\label{sec:11FCT}
+\input{11FCT}
\chapter{Prédiction des systèmes chaotiques}
+\input{chaosANN}
+
+
+
+
+\part{Applications à la génération de nombres pseudo aléatoires}
+
+\chapter{Caractérisation des générateurs chaotiques}
+\input{15RairoGen}
+
+\chapter{Les générateurs issus des codes de Gray}
+\input{14Secrypt}
+
+
+%\chapter{Quelques expérimentations}
+
-13 JournalMichel
+\part{Application au marquage de média}
+\chapter{Des embarquement préservant le chaos}
+% OXFORD
+\input{oxford}
+\chapter{Des démarches plus classiques}
+\section{QIM}
+\section{STABYLO}
+ \input{stabylo}
+\part{Conclusion et Perspectives}
+
+
+
+
+\JFC{Perspectives pour SDD->Promela}
+Among drawbacks of the method, one can argue that bounded delays is only
+realistic in practice for close systems.
+However, in real large scale distributed systems where bandwidth is weak,
+this restriction is too strong. In that case, one should only consider that
+matrix $s^{t}$ follows the iterations of the system, \textit{i.e.},
+for all $i$, $j$, $1 \le i \le j \le n$, we have$
+\lim\limits_{t \to \infty} s_{ij}^t = + \infty$.
+One challenge of this work should consist in weakening this constraint.
+We plan as future work to take into account other automatic approaches
+to discharge proofs notably by deductive analysis~\cite{CGK05}.
+
+\JFC{Perspective ANN}
+
+In future work we intend to enlarge the comparison between the
+learning of truly chaotic and non-chaotic behaviors. Other
+computational intelligence tools such as support vector machines will
+be investigated too, to discover which tools are the most relevant
+when facing a truly chaotic phenomenon. A comparison between learning
+rate success and prediction quality will be realized. Concrete
+consequences in biology, physics, and computer science security fields
+will then be stated.
+Ajouter lefait que le codede gray n'est pas optimal.
+On pourrait aussi travailler à établir un classement qui préserverait
+le fait que deux configurations voisines seraient représentées
+par deux entiers voisins. Par optimisation?
+
+\JFC{Perspectives pour les générateurs} : marcher ou sauter... comment on
+pourrait étendre, ce que l'on a déjà, ce qu'il reste à faire.
+
+
+\JFC{prespectives watermarking : réécrire l'algo nicolas dans le formalisme
+du chapitre 8}
+
+% TSI 2015
-% \part{Conclusion et Perspectives}
% \chapter{Conclusion}
\chapter{Preuves sur les systèmes chaotiques}
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
\input{annexecontinuite.tex}
-
-
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
\input{caracunaire.tex}
-\section{Preuve que $d$ est une distance sur $\mathcal{X}$}\label{anx:distance:generalise}
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
\input{preuveDistanceGeneralisee}
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:generalise}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
\input{caracgeneralise.tex}
-
-
\section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
\input{annexesccg}
+\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
+\input{annexePreuveDistribution}
+\input{annexePreuveStopping}
+
+\chapter{Preuves sur le marquage de média}\label{anx:marquage}
+\section{Le marquage est $\epsilon$-sego-secure}
+\input{annexePreuveMarquagedhci}
+\section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
+\input{annexePreuveMarquagefldblement}
+\section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue}
+\input{annexePreuveMarquageCorrectioncompletude}
\backmatter
\bibliographystyle{apalike}