]> AND Private Git Repository - hdrcouchot.git/blobdiff - caracgeneralise.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
resumes retraités
[hdrcouchot.git] / caracgeneralise.tex
index 3014a6b4d9db1312a227652f9bfca1720de625c5..9ebc5d18756a7df426ec906a43b52ae95fdcb881 100644 (file)
@@ -4,7 +4,7 @@ des itérations généralisées.
 
 \caractransitivegeneralise*
 
 
 \caractransitivegeneralise*
 
-\begin{Proof} 
+\begin{proof} 
 
 $\Longleftarrow$ Supposons que $\textsc{gig}(f)$ soit fortement connexe.
 Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}_g$ et  $\varepsilon >0$. 
 
 $\Longleftarrow$ Supposons que $\textsc{gig}(f)$ soit fortement connexe.
 Soient $(x,S)$ et $(x',S')$ deux points de $\mathcal{X}_g$ et  $\varepsilon >0$. 
@@ -49,7 +49,7 @@ Pour tout entier naturel $t$, on a
 $G_{f_g}^t(x'',S'') \neq (x',S')$.
 Ainsi $G_{f_g}$ n'est pas transitive et 
 par contraposée, on a la démonstration souhaitée.
 $G_{f_g}^t(x'',S'') \neq (x',S')$.
 Ainsi $G_{f_g}$ n'est pas transitive et 
 par contraposée, on a la démonstration souhaitée.
-\end{Proof}
+\end{proof}
 
 
 Prouvons à présent le théorème suivant: 
 
 
 Prouvons à présent le théorème suivant: 
@@ -57,7 +57,7 @@ Prouvons à présent le théorème suivant:
 \caracsubgeneralise*
 
 
 \caracsubgeneralise*
 
 
-\begin{Proof}  
+\begin{proof}  
 Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_{f_g}$ est transitive (\textit{i.e.}
 $f$ appartient à $\mathcal{T}$). 
 Soit $(x,S) \in\mathcal{X}_g$ et $\varepsilon >0$. Pour 
 Soit $f:\Bool^{\mathsf{N}}\to\Bool^{\mathsf{N}}$ telle que  $G_{f_g}$ est transitive (\textit{i.e.}
 $f$ appartient à $\mathcal{T}$). 
 Soit $(x,S) \in\mathcal{X}_g$ et $\varepsilon >0$. Pour 
@@ -82,7 +82,7 @@ Il est évident que  $(x,\tilde S)$ s'obtient à partir de  $(x,\tilde S)$ aprè
 $t_1+t_2$ itérations parallèles de $G_{f_g}$. Ainsi $(x,\tilde S)$ est un point 
 périodique. Puisque $\tilde s_t$ est égal à $s_t$ pour $t<t_1$, d'après le 
 choix de  $t_1$, on a  $d((x,S),(x,\tilde S))<\epsilon$.
 $t_1+t_2$ itérations parallèles de $G_{f_g}$. Ainsi $(x,\tilde S)$ est un point 
 périodique. Puisque $\tilde s_t$ est égal à $s_t$ pour $t<t_1$, d'après le 
 choix de  $t_1$, on a  $d((x,S),(x,\tilde S))<\epsilon$.
-\end{Proof}
+\end{proof}
 
 On peut conclure  que $\mathcal{C} = \mathcal{R} \cap \mathcal{T}
 = \mathcal{T}$. 
\ No newline at end of file
 
 On peut conclure  que $\mathcal{C} = \mathcal{R} \cap \mathcal{T}
 = \mathcal{T}$. 
\ No newline at end of file