et en vérifiant tous les $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
\item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment symétrique
($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$).
et en vérifiant tous les $n \times \max{(\mathcal{P})}$ blocs, $u=\check{u}$.
\item $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}$ est évidemment symétrique
($d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(\check{s},s)$).