-In what follows, let $Xd^t_{ji}$ be the value of
-\verb+Xd[+$j$\verb+].v[+$i$\verb+]+ after the $t^{\text{th}}$ call to the
-function \verb+fetch_values+. Furthermore, let $Y^k_{ij}$ be the element at
-index $k$ in the channel \verb+channels[i].sent[j]+ of size $m$, $m \le
-\delta_0$; $Y^0_{ij}$ and $Y^{m-1}_{ij}$ are respectively the head and the tail
-of the channel. Secondly, let $(M_{ij}^t)^{t \in \{1, 1.5, 2, 2.5,\ldots\}}$ be a
-sequence such that $M_{ij}^t$ is the partial function that associates to each
-$k$, $0 \le k \le m-1$, the tuple $(Y^k_{ij},a^k_{ij},c^k_{ij})$ while entering
-into the \verb+update_elems+ at iteration $t$ where
-% \begin{itemize}
-% \item
- $Y^k_{ij}$ is the value of the channel \verb+channels[i].sent[j]+
- at index $k$,
-%\item
-$a^k_{ij}$ is the date (previous to $t$) when $Y^k_{ij}$ has been added and
-%\item
-$c^k_{ij}$ is the first date at which the value is available on $j$. So,
- the value is removed from the channel $i\rightarrow j$ at date $c^k_{ij}+1$.
-%\end{itemize}
-$M_{ij}^t$ has the following signature:
-\begin{equation*}
-\begin{array}{rrcl}
-M_{ij}^t: &
-\{0,\ldots, \textit{max}-1\} &\rightarrow & E_i\times \Nats \times \Nats \\
-& k \in \{0,\ldots, m-1\} & \mapsto & M_{ij}(k)= (Y^k_{ij},a^k_{ij},c^k_{ij}).
-\end{array}
-\end{equation*}
-
-Intuitively, $M_{ij}^t$ is the memory of \verb+channels[i].sent[j]+ while
-starting the iteration $t$. Notice that the domain of any $M_{ij}^1$ is $\{0\}$
-and $M_{ij}^1(0)=(\verb+Xp[i]+,0,0)$: indeed, the \verb+init+ process
-initializes \verb+channels[i].sent[j]+ with \verb+Xp[i]+.
-
-Let us show how to make the indeterminism inside the two functions\linebreak
-\verb+fetch_values+ and \verb+diffuse_values+ compliant with \Equ{eq:async}.
-The function $M_{ij}^{t+1}$ is obtained by the successive updates of
-$M_{ij}^{t}$ through the two functions\linebreak \verb+fetch_values+ and
-\verb+diffuse_values+. Abusively, let $M_{ij}^{t+1/2}$ be the value of
-$M_{ij}^{t}$ after the former function during iteration $t$.
-
-In what follows, we consider elements $i$ and $j$ both in $\llbracket 1, n
-\rrbracket$ that are updated. At iteration $t$, $t \geq 1$, let
-$(Y^0_{ij},a^0_{ij},c^0_{ij})$ be the value of $M_{ij}^t(0)$ at the beginning of
-\verb+fetch_values+. If $t$ is equal to $c^0_{ij}+1$ then we execute the
-instruction that assigns $Y^0_{ij}$ (\textit{i.e.}, the head value of
-\verb+channels[i].sent[j]+) to $Xd_{ji}^t$. In that case, the function
-$M_{ij}^t$ is updated as follows: $M_{ij}^{t+1/2}(k) = M_{ij}^{t}(k+1)$ for each
-$k$, $0 \le k \le m-2$ and $m-1$ is removed from the domain of $M_{ij}^{t+1/2}$.
-Otherwise (\textit{i.e.}, when $t < c^0_{ij}+1$ or when the domain of $M_{ij}$
-is empty) the \verb+skip+ statement is executed and $M_{ij}^{t+1/2} =
-M_{ij}^{t}$.
-
-In the function \verb+diffuse_values+, if there exists some $\tau$, $\tau\ge t$
-such that \mbox{$D^{\tau}_{ji} = t$}, let $c_{ij}$ be defined by $ \min\{l \mid
-D^{l}_{ji} = t \} $. In that case, we execute the instruction that adds the
-value \verb+Xp[i]+ to the tail of \verb+channels[i].sent[j]+. Then,
-$M_{ij}^{t+1}$ is defined as an extension of $M_{ij}^{t+1/2}$ in $m$ such that
-$M_{ij}^{t+1}(m)$ is $(\verb+Xp[i]+,t,c_{ij})$. Otherwise (\textit{i.e.}, when $\forall l
-\, . \, l \ge t \Rightarrow D^{l}_{ji} \neq t$ is established) the \verb+skip+
-statement is executed and $M_{ij}^{t+1} = M_{ij}^{t+1/2}$.
-
-
-\begin{lemma}[Existence of SPIN Execution]\label{lemma:execution}
- For any sequences $(S^t)^{t \in \Nats}$,\linebreak $(D^t)^{t \in \Nats}$, for
- any map $F$ there exists a SPIN execution such that for any iteration $t$, $t
- \ge 1$, for any $i$ and $j$ in $\llbracket 1, n \rrbracket$ we have the
- following properties:
-
-\noindent If the domain of $M_{ij}^t$ is not empty, then
-\begin{equation}
- \left\{
- \begin{array}{rcl}
- M_{ij}^1(0) & = & \left(X_i^{D_{ji}^{0}}, 0,0 \right) \\
- \textrm{if $t \geq 2$ then }M_{ij}^t(0) & = &
- \left(X_i^{D_{ji}^{c}},D_{ji}^{c},c \right) \textrm{, }
- c = \min\{l | D_{ji}^l > D_{ji}^{t-2} \}
- \end{array}
- \right.
- \label{eq:Mij0}
-\end{equation}
-\noindent Secondly we have:
-\begin{equation}
- \forall t'\, .\, 1 \le t' \le t \Rightarrow Xd^{t'}_{ji} = X^{D^{t'-1}_{ji}}_i
- \label{eq:correct_retrieve}
-\end{equation}
-\noindent Thirdly, for any $k\in S^t$. Then, the value of the computed variable
-\verb+Xp[k]+ at the end of the \verb+update_elems+ process is equal to
-$X_k^{t}$ \textit{i.e.}, $F_{k}\left( X_1^{D_{k\,1}^{t-1}},\ldots,
- X_{n}^{D_{k\,{n}}^{t-1}}\right)$ at the end of the $t^{\text{th}}$ iteration.
-\end{lemma}
-\begin{Proof}
-The proof is done by induction on the number of iterations.
-
-\paragraph{Initial case:}