]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
retouche preuve gray
[hdrcouchot.git] / main.tex
index cacbb948555a86041b63eaff37f5be28e589a09d..1c00650ceef48889ac2cb87e81d53c5d938256e6 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -22,6 +22,8 @@
 \usepackage{thmtools, thm-restate}
 \usepackage{multirow}
 \usepackage{algorithm2e}
+\usepackage{mathtools}
+
 %\declaretheorem{theorem}
 
 %%--------------------
 \def \P {\mathbb{P}}
 \def \ov {\overline}
 \def \ts {\tau_{\rm stop}}
-
+\def\rl{{^{.}}}
+
+\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
+\DeclarePairedDelimiter\norm{\lVert}{\rVert}%
+
+% Swap the definition of \abs* and \norm*, so that \abs
+% and \norm resizes the size of the brackets, and the 
+% starred version does not.
+\makeatletter
+\let\oldabs\abs
+\def\abs{\@ifstar{\oldabs}{\oldabs*}}
+%
+\let\oldnorm\norm
+\def\norm{\@ifstar{\oldnorm}{\oldnorm*}}
+\makeatother
 
 \newtheorem{theorem}{Théorème}
 \newtheorem{lemma}{Lemme}
 \newtheorem{corollary}{Corollaire}
 \newtheorem*{xpl}{Exemple}
-\newtheorem*{Proof}{Preuve}
+
 \newtheorem{Def}{Définition}
 
 \begin{document}
@@ -156,22 +172,31 @@ Blabla blabla.
 
 \mainmatter
 
-\part{Réseaux Discrets}
+\part{Réseaux discrets}
 
 \chapter{Iterations discrètes de réseaux booléens}
-\JFC{chapeau à refaire}
-\section{Formalisation}
+
+Ce chapitre formalise tout d'abord ce qu'est 
+un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit 
+les différents modes opératoires, leur représentation à l'aide de 
+graphes et les résultats connus de convergence).
+Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
+comment combiner ces modes pour converger aussi 
+souvent, mais plus rapidement vers un point fixe. Les deux 
+dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
+
+\section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
-\section{Combinaisons synchrones et asynchrones}
+\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage}
 \input{mixage}
 
 \section{Conclusion}
-\JFC{Conclusion à refaire}
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, nous avons exposé comment construire un mode combinant les
+Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens,
+nous avons exposé comment construire un mode combinant les
 avantage du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
@@ -193,12 +218,19 @@ au chaos}
   discrets chaotiques]{Caracterisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
-La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
-Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
-généralisée (TSI).  Pour chacune d'elle, 
-on introduit une distance différente.
-
-On montre qu'on a des résultats similaires.
+La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
+convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
+La première section  de ce chapitre rappelle ce que sont les systèmes 
+dynamiques chaotiques et leur caractéristiques.
+La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10},
+se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se 
+suffisant à lui-même.
+La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, 
+une métrique est définie. Finalement, la section~\ref{sec:11FCT}
+exhibe des conditions suffisantes premettant d'engendrer 
+des fonctions chaotiques seon le mode unaire.
+Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
+dans~\cite{bcg11:ij,bcgr11:ip}.
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
@@ -207,13 +239,23 @@ On montre qu'on a des résultats similaires.
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
-\section{Schéma généralisé}
+\section{Schéma généralisé}\label{sec:chaos:TSI}
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
+\section{Conclusion}
+Ce chapitre a montré que les itérations unaires sont chaotiques si
+et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
+que les itérations généralisées sont chaotiques si
+et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
+On dispose ainsi à priori d'une collection infinie de fonctions chaotiques.
+Le chapitre suivant s'intéresse à essayer de prédire le comportement 
+de telles fonctions. 
+
+
 \chapter{Prédiction des systèmes chaotiques}
 \input{chaosANN}
 
@@ -234,7 +276,6 @@ On montre qu'on a des résultats similaires.
 
 
 \chapter{Des embarquement préservant le chaos}\label{chap:watermarking} 
-% OXFORD
 \input{oxford}
 
 \chapter{Une démarche de  marquage de PDF}
@@ -244,6 +285,10 @@ On montre qu'on a des résultats similaires.
 \chapter{Une démarches plus classique de dissimulation: STABYLO}
  \input{stabylo}
 
+\chapter{Schéma de stéganographie: les dérivées du second ordre}
+ \input{stegoyousra}
+
+
 
 \part{Conclusion et Perspectives}
 
@@ -295,7 +340,7 @@ du chapitre 8}
 
 \appendix
 
-\chapter{Preuves sur les SDD}
+\chapter{Preuves sur les réseaux discrets}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
@@ -310,13 +355,12 @@ du chapitre 8}
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
-\input{annexecontinuite.tex}
+%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
+%\input{annexecontinuite.tex}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
-\input{caracunaire.tex}
-
+%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
+%\input{caracunaire.tex}
 
 \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
@@ -326,12 +370,17 @@ du chapitre 8}
 \input{caracgeneralise.tex}
 
 
-\section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
+\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}}
 \input{annexesccg}
 
 
 \chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
 \input{annexePreuveDistribution}
+
+\section{Codes de Gray équilibrés par induction}
+\input{annexePreuveGrayEquilibre}
+
+\section{Majoration du temps d'arrêt}
 \input{annexePreuveStopping}
 
 \chapter{Preuves sur le marquage de média}\label{anx:marquage}
@@ -345,7 +394,7 @@ du chapitre 8}
 \input{annexePreuveMarquageCorrectioncompletude}
 \backmatter
 
-\section{Complexité d'Algorithmes de stéganographie}
+\section{Complexités d'algorithmes de stéganographie}
 \label{anx:preuve:cplxt}
 \input{annexePreuvesComplexiteStego}