]> AND Private Git Repository - hdrcouchot.git/blobdiff - ahmad.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
ajout de quelques tex
[hdrcouchot.git] / ahmad.tex
index 1b92dbced478c7e7e615150393e81f8704348b8a..9a70e96bbb42272acc6706d21d10c182e3c9f844 100644 (file)
--- a/ahmad.tex
+++ b/ahmad.tex
@@ -9,18 +9,24 @@ ajoutent des caractères invisibles dans le document.
 En supprimant ces espaces ou caractères invisibles, la marque s'enlève
 facilement.
 Dans~\cite{PD2008}, les auteurs modifient de manière imperceptible
-le positionnements des caractères. D'autres éléments de positionnement
+le positionnement des caractères. D'autres éléments de positionnement
 sont intégrés dans~\cite{WT08}.
 Une attaque qui modifierait  aléatoirement de manière faible ces positions
  détruirait la marque dans les deux cas.
 La quantification (au sens du traitement du signal) est une réponse
 à ces attaques: des positions modifiées de manière mal intentionnée  
-peuvent grâce cette démarche être rapprochées (abstraites) en des positions
+peuvent grâce à cette démarche être rapprochées (abstraites) en des positions
 préétablies et conserver ainsi leur information et donc la marque.
 STDM~\cite{CW01} est une instance de ces schémas de marquage.
 
 Ce chapitre présente une application de STDM au marquage de documents PDFs.
-\JFC{annonce du plan}
+La première section fournit quelques rappels sur la STDM. Le schéma basé sur 
+cette approche est présenté à la section~\ref{sec:stdm:schema}. 
+Finalement, la démarche expérimentale permettant de trouver un compromis entre 
+robustesse et qualité visuelle est présentée à la section~\ref{sec:stdm:exp}.
+Ce travail a été publié dans~\cite{BDCC16}.
+
+
 
 \section{Rappels sur la Spread Transform Dither Modulation}
 \label{sec:STDM}
@@ -66,7 +72,7 @@ $U(\Delta)$.
 Tous les éléments sont en place pour embarquer une marque 
 dans un fichier PDF selon le schéma STDM.
 
-\section{Application au marquage de documents PDF}
+\section{Application au marquage de documents PDF}\label{sec:stdm:schema}
 
 On détaille successivement comment insérer une marque dans un document PDF, 
 puis comment l'extraire.
@@ -89,7 +95,7 @@ pour ce $L$ donné.
   de chaque caractère rencontré dans le document PDF. 
   La dimension $L$ est calculée comme la partie entière de $N/k$.
 
-\item Un générateur pseudo aléatoire (initialisé par une clef) 
+\item Un générateur pseudo-aléatoire (initialisé par une clef) 
 construit $k$ ensembles $M_1$, \ldots, $M_k$ 
 de taille $L$ mutuellement disjoints dans $[1,N]$. Ainsi 
 $\bigcup_{1\le i \le k} M_i \subseteq [N]$. 
@@ -107,7 +113,7 @@ $\bigcup_{1\le i \le k} M_i \subseteq [N]$.
   selon le nouveau vecteur de positions ${x'}$. 
 \end{enumerate}
 
-Voyons comment extraire une marque d'une document PDF.
+Voyons comment extraire une marque d'un document PDF.
 
 \subsection{Extraction de la marque}
 
@@ -121,7 +127,7 @@ marque.
   caractères du document PDF comme dans la phase d'insertion. 
   la valeur de $L$ est définie comme précédemment.
 
-\item le même générateur pseudo aléatoire (initialisé avec la même clef) 
+\item le même générateur pseudo-aléatoire (initialisé avec la même clef) 
 construit les $k$ mêmes ensembles $M_1$, \ldots, $M_k$ 
 de taille $L$ mutuellement disjoints dans $[1,N]$. 
 
@@ -132,7 +138,7 @@ de taille $L$ mutuellement disjoints dans $[1,N]$.
   en remplaçant $x'$ par $\dot{x'}$ .
 \end{enumerate}
 
-\section{Expérimentations }
+\section{Expérimentations}\label{sec:stdm:exp}
 Le schéma de marquage est paramétré par $\Delta$,  $d_0$ et la manière de construire le vecteur $p$ pour une taille $L$. 
 Les travaux réalisés se sont focalisés sur l'influence du paramètre 
 $D_S = \frac{\Delta^2}{12L}$ dans l'algorithme en satisfaisant 
@@ -158,7 +164,7 @@ possible de remarquer une différence entre le document original
 et le document marqué.
 
 Il nous reste à détailler les expériences d'étude de robustesse de la démarche.
-Comme dans l'évaluation de la transparence, il s'est agit de faire 
+Comme dans l'évaluation de la transparence, il s'est agi de faire 
 varier le paramètre  $\Delta$.
 Pour chacune de ces valeurs, le document a été altéré selon 
 un flou gaussien (de paramètre 0,1 et 0,25)