]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
++
[hdrcouchot.git] / main.tex
index 16de4a6d6df0dbe324d0067f70d7a9b76bfef6dd..fdcf059d1a0c5211550615b73e7c08c1954d9225 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -16,6 +16,7 @@
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
+\usepackage{multirow}
 %\declaretheorem{theorem}
 
 %%--------------------
 \newcommand{\Bool}[0]{\ensuremath{\mathds{B}}}
 \newcommand{\rel}[0]{\ensuremath{{\mathcal{R}}}}
 \newcommand{\Gall}[0]{\ensuremath{\mathcal{G}}}
-\newcommand{\Sec}[1]{Sect\,\ref{#1}}
+\newcommand{\Sec}[1]{Section\,\ref{#1}}
 \newcommand{\Fig}[1]{{\sc Figure}~\ref{#1}}
 \newcommand{\Alg}[1]{Algorithme~\ref{#1}}
 \newcommand{\Tab}[1]{Tableau~\ref{#1}}
@@ -139,18 +140,19 @@ Blabla blabla.
 
 \mainmatter
 
-\part{Système Booléens}
+\part{Réseaux Discrets}
 
-\chapter{Iterations discrètes de Systèmes Dynamiques booléens}
+\chapter{Iterations discrètes de réseaux booléens}
+\JFC{chapeau à refaire}
 \section{Formalisation}
 \input{sdd}
 
-
 \section{Combinaisons synchrones et asynchrones}
 \input{mixage}
 
-
 \section{Conclusion}
+\JFC{Conclusion à refaire}
+
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
 Dans ce chapitre, nous avons exposé comment construire un mode combinant les
@@ -160,7 +162,7 @@ de l'asynchronisme en terme de vitesse de convergence.
 
 
 
-\chapter[Preuve de convergence de systèmes booléens]{Preuve automatique de  convergence de systèmes booléens}\label{chap:promela}
+\chapter{Preuve automatique de  convergence}\label{chap:promela}
 \input{modelchecking}
 
 
@@ -171,23 +173,37 @@ de l'asynchronisme en terme de vitesse de convergence.
 \part{Des systèmes dynamiques discrets 
 au chaos} 
 
-\chapter{Characterisation des systèmes 
-  discrets chaotiques}
+\chapter[Caracterisation des systèmes 
+  discrets chaotiques]{Caracterisation des systèmes 
+  discrets chaotiques pour les schémas unaires et généralisés}
+
+La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
 Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
 généralisée (TSI).  Pour chacune d'elle, 
 on introduit une distance différente.
 
 On montre qu'on a des résultats similaires.
 
+\section{Systèmes dynamiques chaotiques selon Devaney}
+\label{subsec:Devaney}
+\input{devaney}
+
+\section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
+\section{Schéma généralisé}
+\input{15TSI}
 
 
-générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien).
+\section{Générer des fonctions chaotiques}
+\input{11FCT} 
+
 
 \chapter{Prédiction des systèmes chaotiques}
 
-13 JournalMichel
+\input{chaosANN}
+
+
 
 
 
@@ -196,8 +212,20 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien)
 
 
 
+\part{Conclusion et Perspectives}
+
+\JFC{Perspectives pour SDD->Promela}
+Among drawbacks of the method,  one can argue that bounded delays is only 
+realistic in practice for close systems. 
+However, in real large scale distributed systems where bandwidth is weak, 
+this restriction is too strong. In that case, one should only consider that 
+matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
+for all $i$, $j$, $1 \le i \le j \le n$,  we have$
+\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
+One challenge of this work should consist in weakening this constraint. 
+We plan as future work to take into account other automatic approaches 
+to discharge proofs notably by deductive analysis~\cite{CGK05}. 
 
-% \part{Conclusion et Perspectives}
 
 % \chapter{Conclusion}
 
@@ -221,17 +249,20 @@ générer des fonctions vérifiant ceci (TIPE12 juste sur le résultat d'adrien)
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X},d)$}\label{anx:cont}
+\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
 \input{annexecontinuite.tex}
 
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_f$ dans $(\mathcal{X},d)$}\label{anx:chaos:unaire}
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
 \input{caracunaire.tex}
 
 
+\section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
+\input{preuveDistanceGeneralisee}
 
 
-
+\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_g}$ dans $(\mathcal{X}_g,d)$}\label{anx:chaos:generalise}
+\input{caracgeneralise.tex}
 
 
 \section{Théorème~\ref{th:Adrien}}\label{anx:sccg}