à la génération de nombres pseudo aléatoires.
On présente tout d'abord le générateur
basé sur des fonctions chaotiques (section~\ref{sub:prng:algo}),
-puis comment intégrer la contrainte de distributionuniforme
+puis comment intégrer la contrainte de distribution uniforme
de la sortie
dans le choix de la fonction à itérer (section~\ref{sub:prng:unif}).
L'approche est évaluée dans la dernière section.
}
return $x$\;
%\end{scriptsize}
-\caption{Algorithme de génération de nombres pseudo aléatoires
-à l'aide de la fonction chaotique $G_f$}
+\caption{PRNG basé sur les itérations unaires.}
\label{CI Algorithm}
\end{algorithm}
Cet algorithme est utilisée dans notre générateur pour construire la longueur
de la stratégie ainsi que les éléments qui la composent.
Pratiquement, il retourne des entiers dans $\llbracket 1 ; l \rrbracket$
-selon une distributionuniforme et utilise
+selon une distribution uniforme et utilise
\textit{XORshift} qui est une classe de générateurs de
nombres pseudo aléatoires conçus par George Marsaglia.
L'algorithme \textit{XORshift}
exploite itérativement l'opérateur $\oplus$
-sur des nombres obtenus grâce à des decalages de bits.
+sur des nombres obtenus grâce à des décalages de bits.
Cet opérateur, défini dans $\Bool^{n}$,
applique la fonction \og xor \fg{}
aux bits de même rang de ses deux opérandes (\og opération bit à bit \fg{}).
$$\exists k \in \mathds{N}^\ast, \forall i,j \in \llbracket 1; n \rrbracket, M_{ij}^k>0.$$
On énonce enfin le théorème suivant liant les
-vecteur de probabilite
-et les chaines de Markov.
+vecteur de probabilités
+et les chaînes de Markov.
Si $M$ est une matrice stochastique régulière, alors $M$
possède un unique vecteur stationnaire de probabilités $\pi$
($\pi.M = \pi$).
- De plus, si $\pi^0$ est un {vecteurDeProbabilite}
+ De plus, si $\pi^0$ est un {vecteur de probabilités}
et si on définit
la suite $(\pi^{k})^{k \in \Nats}$ par
$\pi^{k+1} = \pi^k.M $ pour $k = 0, 1,\dots$
- alors la {chaineDeMarkov} $\pi^k$
+ alors la {chaîne de Markov} $\pi^k$
converge vers $\pi$ lorsque $k$ tend vers l'infini.
\end{theorem}
Leurs graphes d'interactions donnés en figure \ref{fig:g:inter} et \ref{fig:h:inter}
vérifient les hypothèses du théorème~\ref{th:Adrien}.
Leurs graphes d'itérations
-sont donc fortement connexes, ce que l'on peut vérifier aux figures
-\ref{fig:g:iter} et \ref{fig:h:iter}.
+sont donc fortement connexes, ce que l'on peut vérifier aux figures~\ref{fig:g:iter}
+et~\ref{fig:h:iter}.
\textit{A priori}, ces deux fonctions pourraient être intégrées
dans un générateur de nombres pseudo aléatoires. Montrons que ce n'est pas le cas pour $g$ et
que cela l'est pour $h$.
d'un tel processus
est $M_g = \frac{1}{2} \check{M}_g$,
où $\check{M}_g$ est la matrice d' adjacence donnée en
-figure~\ref{fig:g:incidence} (voir ci-après), et similairement pour $M_h$.
+figure~\ref{fig:g:incidence} (voir ci-après), et de manière similaire pour $M_h$.
\begin{figure}[h]
\begin{center}
le vecteur d’état de la chaîne de Markov
ait une distribution suffisamment proche de la distribution uniforme.
-On énnonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
+On énonce directement le théorème suivant dont la preuve est donnée en annexes~\ref{anx:generateur}.
\begin{theorem}
Soit $f: \Bool^{n} \rightarrow \Bool^{n}$, $\textsc{giu}(f)$ son
On reprend le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:G} à la section~\ref{sec:11FCT}.
On a vu qu'il y avait 520 fonctions $f$ non isomorphes de graphe d'interactions $\Gamma(f)$,
-dont seulement 16 d'entre elles possédent une matrice doublement stochastique.
+dont seulement 16 d'entre elles possèdent une matrice doublement stochastique.
La figure~\ref{fig:listfonction} explicite ces 16 fonctions en
définissant les images des éléments de la liste
-- autrement dit, où la déviation par rapport à la distribution uniforme --
est inférieure
à $10^{-4}$. En prenant le max pour tous les $e_i$, on obtient une valeur pour
- $b$. Ainsi, on a
-$$
+ $b$.
+Ainsi, on a
+\begin{equation}
b = \max\limits_{i \in \llbracket 1, 2^n \rrbracket}
\{
\min \{
t \mid t \in \Nats, \vectornorm{e_i M_f^t - \pi} < 10^{-4}
\}
\}.
-$$
+\label{eq:mt:ex}
+\end{equation}
+
+\noindent Par la suite, ce nombre sera appelé \emph{temps de mélange}.
+
+
\begin{figure}%[h]
\begin{center}
passent avec succès cette batterie de tests.
Pour conclure cette section, on remarque que le générateur de nombres pseudo-aléatoires
-a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorqu'il y a une sortie pour chaque itération.
-Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformémement distribuée:
+a été prouvé chaotique pour $b=1$, \textit{i.e.}, lorsqu'il y a une sortie pour chaque itération.
+Ceci est difficilement compatible avec la volonté d'avoir une sortie uniformément distribuée:
se rapprocher de cette distribution nécessite en effet un nombre plus élevé
d'itérations $b$ entre chaque sortie. Par exemple, dans l'exemple précédent, il est nécessaire
d'itérer au moins 42 fois entre chaque sortie pour suivre une loi uniforme à $10^{-4}$ près.
\section{Un PRNG basé sur des itérations unaires qui est chaotique }
Cette section présente un espace métrique adapté au générateur de nombres pseudo-aléatoires
-pésenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente
+présenté à l'algorithme~\ref{CI Algorithm} et prouve ensuite que la fonction qu'il représente
est chaotique sur cet espace.
\subsection{Un espace $\mathcal{X}_{\mathsf{N},\mathcal{P}}$ pour le PRNG de l'algorithme~\ref{CI Algorithm}}
$\mathsf{p}$ vaut 1 et $p_1=b$.
-Cet algorithme peut être vu comme $b$ compostions de la function $F_{f_u}$.
+Cet algorithme peut être vu comme $b$ compostions de la fonction $F_{f_u}$.
Ceci peut cependant se généraliser à $p_i$, $p_i \in \mathcal{P}$,
compositions fonctionnelles de $F_{f_u}$.
Ainsi, pour chaque $p_i \in \mathcal{P}$, on construit la fonction
La suite $(v^k)_{k \in \Nats}$ définit combien d'itérations sont exécutées au temps $k$ entre deux sorties.
La séquence $(u^k)_{k \in \Nats}$ définit quel élément est modifié (toujours au temps $k$).
-Définissons la fonction de décallage $\Sigma$ pour chaque élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
+Définissons la fonction de décalage $\Sigma$ pour chaque élément de $\mathds{S}_{\mathsf{N},\mathcal{P}}$.
$$\begin{array}{cccc}
\Sigma:&\mathds{S}_{\mathsf{N},\mathcal{P}} &\longrightarrow
&\mathds{S}_{\mathsf{N},\mathcal{P}} \\
\end{array}
$$
En d'autres termes, $\Sigma$ reçoit deux suites $u$ et $v$ et
-effectue $v^0$ décallage vers la droite sur la première et un décallage vers la droite
+effectue $v^0$ décalage vers la droite sur la première et un décalage vers la droite
sur la seconde.
où $s=(u,v)$ et $\check{s}=(\check{u},\check{v})$ sont dans $ \mathds{S}_{\mathsf{N},\mathcal{P}} =
\mathcal{S}_{\llbracket 1, \mathsf{N} \rrbracket} \times \mathcal{S}_\mathcal{P}$.
\begin{itemize}
-\item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$. The Hamming distance
-on their binary decomposition, that is, the number of dissimilar binary digits, constitutes the integral
-part of $d(X,\check{X})$.
-\item The fractional part is constituted by the differences between $v^0$ and $\check{v}^0$, followed by the differences
-between finite sequences $u^0, u^1, \hdots, u^{v^0-1}$ and $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, followed by
- differences between $v^1$ and $\check{v}^1$, followed by the differences
-between $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ and $\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
-More precisely, let $p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ and $n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
+\item $e$ et $\check{e}$ sont des entiers appartenant à $\llbracket 0, 2^{\mathsf{N}-1} \rrbracket$.
+La distance de Hamming $d_{\mathds{B}^\mathsf{N}}$ sur entre les
+décompositions binaires de $e$ et de $\check{e}$ (\textit{i.e.}, le
+le nombre de bits qu'elles ont de différent) constitue
+la partie entière de $d(X,\check{X})$.
+\item la partie décimale est construite à partir des différences entre
+$v^0$ et $\check{v}^0$, suivie des différences entre les séquences finies
+$u^0, u^1, \hdots, u^{v^0-1}$ et $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$, suivie par les différences entre $v^1$ et $\check{v}^1$,
+suivie par les différences entre $u^{v^0}, u^{v^0+1}, \hdots, u^{v^1-1}$ et
+$\check{u}^{\check{v}^0}, \check{u}^{\check{v}^0+1}, \hdots, \check{u}^{\check{v}^1-1}$, etc.
+
+Plus précisément, soit
+$p = \lfloor \log_{10}{(\max{\mathcal{P}})}\rfloor +1$ et
+$n = \lfloor \log_{10}{(\mathsf{N})}\rfloor +1$.
\begin{itemize}
-\item The $p$ first digits of $d(x,\check{x})$ is $|v^0-\check{v}^0|$ written in decimal numeration (and with $p$ digits).
-\item The next $n\times \max{(\mathcal{P})}$ digits aim at measuring how much $u^0, u^1, \hdots, u^{v^0-1}$ differs from $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$. The $n$ first
-digits are $|u^0-\check{u}^0|$. They are followed by
-$|u^1-\check{u}^1|$ written with $n$ digits, etc.
+\item Les $p$ premiers éléments de $d(x,\check{x})$ sont $|v^0-\check{v}^0|$
+ écrits en base 10 et sur $p$ indices;
+\item les $n\times \max{(\mathcal{P})}$ éléments suivants servent
+ à évaluer de combien $u^0, u^1, \hdots, u^{v^0-1}$ diffère de
+ $\check{u}^0, \check{u}^1, \hdots, \check{u}^{\check{v}^0-1}$.
+ Les $n$ premiers éléments sont $|u^0-\check{u}^0|$. Il sont suivis de
+$|u^1-\check{u}^1|$ écrits à l'aide de $n$ éléments, etc.
\begin{itemize}
-\item If
-$v^0=\check{v}^0$, then the process is continued until $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ and the fractional
-part of $d(X,\check{X})$ is completed by 0's until reaching
-$p+n\times \max{(\mathcal{P})}$ digits.
-\item If $v^0<\check{v}^0$, then the $ \max{(\mathcal{P})}$ blocs of $n$
-digits are $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
-$\check{u}^{v^0}$ (on $n$ digits), ..., $\check{u}^{\check{v}^0-1}$ (on $n$ digits), followed by 0's if required.
-\item The case $v^0>\check{v}^0$ is dealt similarly.
+\item Si
+$v^0=\check{v}^0$,
+alors le processus se continue jusqu'à $|u^{v^0-1}-\check{u}^{\check{v}^0-1}|$ et la
+partie décimale de $d(X,\check{X})$ est complétée par des 0
+jusqu'à atteindre
+$p+n\times \max{(\mathcal{P})}$ éléments.
+\item Si $v^0<\check{v}^0$, alors les $ \max{(\mathcal{P})}$ blocs de $n$
+éléments sont $|u^0-\check{u}^0|$, ..., $|u^{v^0-1}-\check{u}^{v^0-1}|$,
+$\check{u}^{v^0}$ (sur $n$ éléments), ..., $\check{u}^{\check{v}^0-1}$ (sur $n$ éléments), suivi par des 0, si besoin.
+\item Le cas $v^0>\check{v}^0$ est similaire, et donc omis
\end{itemize}
-\item The next $p$ digits are $|v^1-\check{v}^1|$, etc.
+\item Les $p$ suivants sont $|v^1-\check{v}^1|$, etc.
\end{itemize}
\end{itemize}
+La fonction $d$ peut se formaliser comme suit:
+$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
+où: % $p=\max \mathcal{P}$ and:
+\begin{itemize}
+\item $d_{\mathds{B}^\mathsf{N}}$ est la distance de Hamming,
+\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline
+$$\begin{array}{rcl}
+ d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
+ \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}}
+ \bigg(|v^k - \check{v}^k| \\
+ & & + \left| \sum_{l=0}^{v^k-1}
+ \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
+ \sum_{l=0}^{\check{v}^k-1}
+ \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
+\end{array}
+$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
+\end{itemize}
+
\begin{xpl}
-Consider for instance that $\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ (so $\mathsf{p}=3$), and that
+On considère par exemple
+$\mathsf{N}=13$, $\mathcal{P}=\{1,2,11\}$ ($\mathsf{p}$ vaut ainsi $3$),
+et
$s=\left\{
\begin{array}{l}
u=\underline{6,} ~ \underline{11,5}, ...\\
v=1,2,...
\end{array}
\right.$
-while
+avec
$\check{s}=\left\{
\begin{array}{l}
\check{u}=\underline{6,4} ~ \underline{1}, ...\\
\end{array}
\right.$.
-So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
-Indeed, the $p=2$ first digits are 01, as $|v^0-\check{v}^0|=1$,
-and we use $p$ digits to code this difference ($\mathcal{P}$ being $\{1,2,11\}$, this difference can be equal to 10). We then take the $v^0=1$ first terms of $u$, each term being coded in $n=2$ digits, that is, 06. As we can iterate
-at most $\max{(\mathcal{P})}$ times, we must complete this
-value by some 0's in such a way that the obtained result
-has $n\times \max{(\mathcal{P})}=22$ digits, that is:
-0600000000000000000000. Similarly, the $\check{v}^0=2$ first
-terms in $\check{u}$ are represented by 0604000000000000000000, and the absolute value of their
-difference is equal to 0004000000000000000000. These digits are concatenated to 01, and
-we start again with the remainder of the sequences.
+Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.010004000000000000000000011005 ...$
+En effet, les $p=2$ premiers éléments sont 01, c'est-à-dire
+$|v^0-\check{v}^0|=1$,
+et on utilise $p$ éléments pour représenter cette différence
+(Comme $\mathcal{P}=\{1,2,11\}$, cette différence peut valoir 10).
+On prend alors le $v^0=1$ premier terme de $u$,
+chaque terme étant codé sur $n=2$ éléments, soit 06.
+Comme on itère au plus $\max{(\mathcal{P})}$ fois,
+on complète cette valeur par des 0 de sorte que
+la chaîne obtenue a $n\times \max{(\mathcal{P})}=22$ éléments, soit:
+0600000000000000000000.
+De manière similaire, les $\check{v}^0=2$ premiers
+termes de $\check{u}$ sont représentés par
+0604000000000000000000.
+LA valeur absolue de leur différence est égale à
+0004000000000000000000.
+Ces éléments sont concaténés avec 01. On peut construire alors le reste de
+la séquence.
\end{xpl}
\begin{xpl}
-Consider now that $\mathsf{N}=9$, and $\mathcal{P}=\{2,7\}$, and that
-
-$s=\left\{
+On considère à présent que $\mathsf{N}=9$, que $\mathcal{P}=\{2,7\}$ et que
+$$s=\left\{
\begin{array}{l}
u=\underline{6,7,} ~ \underline{4,2,} ...\\
v=2,2,...
\end{array}
-\right.$
-while
-$\check{s}=\left\{
+\right.$$
+avec
+$$\check{s}=\left\{
\begin{array}{l}
\check{u}=\underline{4, 9, 6, 3, 6, 6, 7,} ~ \underline{9, 8}, ...\\
\check{v}=7,2,...
\end{array}
-\right.$
+\right.
+$$
-So $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$, as $|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
-and $|9800000-4200000| = 5600000$.
+Ainsi $d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) = 0.5173633305600000...$,
+puisque
+$|v^0-\check{v}^0|=5$, $|4963667-6700000| = 1736333$, $|v^1-\check{v}^1|=0$,
+et $|9800000-4200000| = 5600000$.
\end{xpl}
-$d$ can be more rigorously written as follows:
-$$d(x,\check{x})=d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s})+d_{\mathds{B}^\mathsf{N}}(e,\check{e}),$$
-where: % $p=\max \mathcal{P}$ and:
+On a la proposition suivante, qui est démontrée en annexes~\ref{anx:generateur}.
+\begin{lemma}
+$d$ est une distance sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
+\end{lemma}
+
+
+\subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$}
+
+A partir de $\mathcal{P}=\{p_1, p_2, \hdots, p_\mathsf{p}\}$, on
+définit le graphe orienté $\textsc{giu}_{\mathcal{P}}(f)$ de la manière suivante:
\begin{itemize}
-\item $d_{\mathds{B}^\mathsf{N}}$ is the Hamming distance,
-\item $\forall s=(u,v), \check{s}=(\check{u},\check{v}) \in \mathcal{S}_{\mathsf{N},\mathcal{P}}$,\newline
-$$\begin{array}{rcl}
- d_{\mathds{S}_{\mathsf{N},\mathcal{P}}}(s,\check{s}) &= &
- \sum_{k=0}^\infty \dfrac{1}{10^{(k+1)p+kn\max{(\mathcal{P})}}}
- \bigg(|v^k - \check{v}^k| \\
- & & + \left| \sum_{l=0}^{v^k-1}
- \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{(l+1)n}} -
- \sum_{l=0}^{\check{v}^k-1}
- \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{(l+1)n}} \right| \bigg)
-\end{array}
-$$ %\left| \sum_{l=0}^{v^k-1} \dfrac{u^{\sum_{m=0}^{k-1} v^m +l}}{ 10^{l}} - \sum_{l=0}^{\check{v}^k-1} \dfrac{\check{u}^{\sum_{m=0}^{k-1} \check{v}^m +l}}{ 10^{l}}\right|\right)}.$$
+\item les n{\oe}uds sont les $2^\mathsf{N}$ configurations de $\mathds{B}^\mathsf{N}$,
+%\item Each vertex has $\displaystyle{\sum_{i=1}^\mathsf{p} \mathsf{N}^{p_i}}$ arrows, namely all the $p_1, p_2, \hdots, p_\mathsf{p}$ tuples
+% having their elements in $\llbracket 1, \mathsf{N} \rrbracket $.
+\item il y a un arc libellé $u_0, \hdots, u_{p_i-1}$, $i \in \llbracket 1, \mathsf{p} \rrbracket$ entre les n{\oe}uds $x$ et $y$ si et seulement si $p_i$ est un élément de
+$\mathcal{P}$ (\textit{i.e.}, on peut itérer $p_i$ fois),
+chaque $u_k$ de la suite appartient à $[\mathsf{N}]$ et
+$y=F_{f_u,p_i} (x, (u_0, \hdots, u_{p_i-1})) $.
\end{itemize}
+Il n'est pas difficile de constater que $\textsc{giu}_{\{1\}}(f)$ est $\textsc{giu}(f)$.
-Let us show that,
-\begin{prpstn}
-$d$ is a distance on $\mathcal{X}_{\mathsf{N},\mathcal{P}}$.
-\end{prpstn}
-\subsection{Le graphe $\textsc{giu}_{\mathcal{P}}(f)$ étendant $\textsc{giu}(f)$}
+
+\begin{figure}%[t]
+ \begin{center}
+ \subfigure[$\textsc{giu}_{\{2\}}(h)$]{
+ \begin{minipage}{0.30\textwidth}
+ \begin{center}
+ \includegraphics[height=4cm]{images/h2prng}
+ \end{center}
+ \end{minipage}
+ \label{fig:h2prng}
+ }
+ \subfigure[$\textsc{giu}_{\{3\}}(h)$]{
+ \begin{minipage}{0.40\textwidth}
+ \begin{center}
+ \includegraphics[height=4cm]{images/h3prng}
+ \end{center}
+ \end{minipage}
+ \label{fig:h3prng}
+ }
+ \subfigure[$\textsc{giu}_{\{2,3\}}(h)$]{
+ \begin{minipage}{0.40\textwidth}
+ \begin{center}
+ \includegraphics[height=4cm]{images/h23prng}
+ \end{center}
+ \end{minipage}
+ \label{fig:h23prng}
+ }
+
+ \end{center}
+ \caption{Graphes d'itérations $\textsc{giu}_{\mathcal{P}}(h)$ pour $h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$}
+ %\label{fig:xplgraphIter}
+ \end{figure}
+
+
+
+
+\begin{xpl}
+On reprend l'exemple où $\mathsf{N}=2$ et
+$h(x_1,x_2)=(\overline{x_1},x_1\overline{x_2}+\overline{x_1}x_2)$ déjà détaillé
+à la section~\ref{sub:prng:unif}.
+
+Le graphe $\textsc{giu}_{\{1\}}(h)$ a déjà été donné à la figure~\ref{fig:h:iter}.
+Les graphes $\textsc{giu}_{\{2\}}(h)$, $\textsc{giu}_{\{3\}}(h)$ et
+$\textsc{giu}_{\{2,3\}}(h)$ sont respectivement donnés aux figure~\ref{fig:h2prng}, ~\ref{fig:h3prng} et ~\ref{fig:h23prng}.
+Le premier (respectivement le second)
+illustre le comportement du générateur lorsque qu'on itère exactement
+2 fois (resp. 3 fois) puis qu'on affiche le résultat.
+Le dernier donnerait le comportement d'un générateur qui s'autoriserait
+à itérer en interne systématiquement 2 ou trois fois avant de retourner un résultat.
+
+\end{xpl}
+
\subsection{le PRNG de l'algorithme~\ref{CI Algorithm} est chaotique sur $\mathcal{X}_{\mathsf{N},\mathcal{P}}$}
+Le théorème suivant, similaire à celui dans $\mathcal{X}_u$ et dans $\mathcal{X}_g$
+est prouvé en annexes~\ref{anx:generateur}.
+
+\begin{theorem}
+La fonction $G_{f_u,\mathcal{P}}$ est chaotique sur
+ $(\mathcal{X}_{\mathsf{N},\mathcal{P}},d)$ si et seulement si
+graphe d'itération $\textsc{giu}_{\mathcal{P}}(f)$
+est fortement connexe.
+\end{theorem}
+On alors corollaire suivant
+
+\begin{corollary}
+ Le générateur de nombre pseudo aléatoire détaillé
+ à l'algorithme~\ref{CI Algorithm}
+ n'est pas chaotique
+ sur $(\mathcal{X}_{\mathsf{N},\{b\}},d)$ pour la fonction négation.
+\end{corollary}
+\begin{proof}
+ Dans cet algorithme, $\mathcal{P}$ est le singleton $\{b\}$.
+ Que $b$ soit pair ou impair, $\textsc{giu}_{\mathcal{b}}(f)$
+ n'est pas fortement connexe.
+\end{proof}
+
+