]> AND Private Git Repository - hdrcouchot.git/blobdiff - stabylo.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
fin prng
[hdrcouchot.git] / stabylo.tex
index e92691533c308d9c6ef51c391e92f6a0fd64e3f3..dda07a403c4544505b2c6c53bdd0816a93710474 100644 (file)
@@ -197,9 +197,76 @@ attribué à STABYLO.
 \label{fig:compared} 
 \end{figure}
 
+\section{Stéganalyse de STABYLO}\label{sec:steg:stabylo}
+Comme dans le chapitre~\ref{chap:watermarking}, 
+la base BOSS~\cite{Boss10} de 10,000 images (au format RAW, de taille $512\times 512$ en niveau de gris) a été à nouveau prise pour évaluer 
+le schéma face à une épreuve de  stéganalyse.
+Pour des rapport entre le nombre de  bits embarqués par
+rapport au nombre de pixels  entre 1/2 et 1/9, le choix de la 
+la matrice dupliquée dans STC est celui énoncé dans les travaux de 
+Filler~\cite{FillerJF11}.
+
+
+Le schéma STABYLO a été systématiquement comparé à HUGO, 
+EAISLSBMR~\cite{Luo:2010:EAI:1824719.1824720},  WOW et UNIWARD
+pour les stratégies fixes (10\%) et adaptives.
+Pour établir la valeur de cette dernière stratégie, le filtre de Canny a été 
+paramétré avec une valeur de $T=3$. 
+Lorsque $b$ vaut 7, la taile moyenne du message pouvant être embarqué est de 
+16,445, \textit{i.e.},  un taux d'embarquement moyen de 6,35\%.
+Pour chaque image, le nombre de bits embarqué par STABYLO est mémorisé et il 
+est demandé à chacun des autres schémas d'embarquer ce même nombre de bits. 
+
+
+\begin{table*}
+\begin{center}
+\begin{small}
+\setlength{\tabcolsep}{3pt}
+\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
+\hline
+Schéma & \multicolumn{3}{c|}{STABYLO} & \multicolumn{2}{c|}{HUGO}& \multicolumn{2}{c|}{EAISLSBMR} &  \multicolumn{2}{c|}{WOW} &  \multicolumn{2}{c|}{UNIWARD}\\
+\hline
+Strétégie & fixe &   \multicolumn{2}{c|}{adapt. ($\approx$6.35\%)}  & fixe & adapt. & fixe & adapt. & fixe & adapt. & fixe & adapt. \\
+\hline
+Ratio & 10\% &     +STC(7) & +STC(6)   & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\% & 10\%& $\approx$6.35\%& 10\%& $\approx$6.35\%\\ 
+\hline
+Ensemble Classifier & 0.35 & 0.47 & 0.47     & 0.48 &  0.49  &  0.43  & 0.47 & 0.48 & 0.49 & 0.46 & 0.49 \\
+
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Steganalyse de STABYLO\label{table:steganalyse}.} 
+\end{table*}
+
+
+Etant considéré  comme le plus exact 
+stéganalyseur dans le domaine spatial, 
+Ensemble Classifier~\cite{DBLP:journals/tifs/KodovskyFH12}
+a été exécuté avec les caractéristiques  
+CCPEV et  SPAM~\cite{DBLP:dblp_conf/mediaforensics/KodovskyPF10}.
+Les valeurs des erreurs moyennes de la phase de test sont reprises    
+au tableau~\ref{table:steganalyse}.
+Les schémas HUGO,  WOW et UNIWARD sont moins facilement détectables que 
+STABYLO (mais à quel prix concernant la complexité). 
+EAILSBMR obtient des résultats semblables à STABYLO, mais encore pour 
+une complexité plus élevée.
+Pour être complet, la figure~\ref{fig:error} montre enfin 
+que lorsque les  taux d'embarquement  sont plus élevés, 
+STABYLO a une sécurité moindre par rapport 
+aux quatre autres schémas.
+\begin{figure}
+\begin{center}
+\includegraphics[scale=0.5]{images/error}
+\end{center}
+\caption{Erreurs moyennes lors des tests obtenus par Ensemble Classifier}
+\label{fig:error} 
+\end{figure}
 
-
-
-
-
-
+\section{Conclusion}
+Le schéma STABYLO a été présenté comme une méthode efficace de stéganographie
+ayant des résultats comparables 
+à HUGO, WOW et  UNIWARD.
+pour de faibles taux d'embarquement.
+L'accent a été mis sur la complexité de l'approche pour une implantation
+effective, même sur des dispositifs à faible capacité de calcul.
\ No newline at end of file