]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
-> prng inclus
[hdrcouchot.git] / main.tex
index 217f8f45225f2a5390897653d4af50e9a69b310f..c6f86cdb58d240e7f10d3f42b976cbdf846403fc 100644 (file)
--- a/main.tex
+++ b/main.tex
@@ -175,19 +175,28 @@ Blabla blabla.
 \part{Réseaux Discrets}
 
 \chapter{Iterations discrètes de réseaux booléens}
-\JFC{chapeau à refaire}
-\section{Formalisation}
+
+Ce chapitre formalise tout d'abord ce qu'est 
+un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit 
+les différents modes opératoires, leur représentation à l'aide de 
+graphes et les résultats connus de convergence).
+Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
+comment combiner ces modes pour converger aussi 
+souvent sans, mais plus rapidement. Cette dernière section 
+a fait l'objet du rapport~\cite{BCVC10:ir}.
+
+\section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
-\section{Combinaisons synchrones et asynchrones}
+\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage}
 \input{mixage}
 
 \section{Conclusion}
-\JFC{Conclusion à refaire}
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, nous avons exposé comment construire un mode combinant les
+Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens,
+nous avons exposé comment construire un mode combinant les
 avantage du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
@@ -209,12 +218,18 @@ au chaos}
   discrets chaotiques]{Caracterisation des systèmes 
   discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
 
-La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
-Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
-généralisée (TSI).  Pour chacune d'elle, 
-on introduit une distance différente.
-
-On montre qu'on a des résultats similaires.
+La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
+convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
+La première section  de ce chapitre rappelle ce que sont les systèmes 
+dynamiques chaotiques et leur caractéristiques. Celles-ci dépendent 
+tout d'abord de la stratégie itérée. La section~\ref{sec:TIPE12} 
+se focalise sur le schéma unaire tandis que la section~\ref{sec:chaos:TSI}
+considère le mode généralisé. Pour chacun de ces modes, 
+une distance est définie. Finalement, la section~\ref{sec:11FCT}
+exhibe des conditions suffisantes premettant d'engendrer 
+des fonctions chaotiques seon le mode unaire.
+Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
+dans~\cite{bcgr11:ip}.
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
@@ -223,13 +238,23 @@ On montre qu'on a des résultats similaires.
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
-\section{Schéma généralisé}
+\section{Schéma généralisé}\label{sec:chaos:TSI}
 \input{15TSI}
 
 
 \section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
+\section{Conclusion}
+Ce chapitre a montré que les itérations unaires sont chaotiques si
+et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
+que les itérations généralisées sont chaotiques si
+et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
+On dispose ainsi à priori d'une collection infinie de fonctions chaotiques.
+Le chapitre suivant s'intéresse à essayer de prédire le comportement 
+de telles fonctions. 
+
+
 \chapter{Prédiction des systèmes chaotiques}
 \input{chaosANN}