-
-
L'étude de convergence de systèmes dynamiques discrets est simple à vérifier
pratiquement pour le mode synchrone. Lorsqu'on introduit des stratégies
pseudo périodiques pour les modes unaires et généralisées, le problème
sont ensuite donnés à la (\Sec{sec:spin:proof}).
Des données pratiques comme la complexité et des synthèses d'expérimentation
sont ensuite fournies (\Sec{sec:spin:practical}).
-
+Ce chapitre a fait l'objet du rapport~\cite{Cou10:ir}.
$\bot$ & 374 & 7.7s&
$\bot$ & 370 & 0.51s \\
\hline %\cline{2-13}
- AC2D
+ \cite{RC07}
&$\bot$ & 2.5 & 0.001s % RC07_async_mixed.spin
&$\bot$ & 2.5 & 0.01s % RC07_async_mixed_all.spin
&$\bot$ & 2.5 & 0.01s % RC07_async.spin
L'exemple \textit{RE} a été prouvé comme universellement convergent.
-\JFC{statuer sur AC2D}
+%\JFC{statuer sur AC2D}
Comme la convergence n'est déjà pas établie pour les itérations synchrones
de~\cite{RC07}, il en est donc
de même pour les itérations asynchrones.
En raison de la dépendance forte entre les éléments
de~\cite{BM99},
$\delta_0$ est réduit à 1. Cela aboutit cependant à $2^{100}$
-configurations dans le mode des itérations asynchrones.
-
-\JFC{Quid de ceci?}
-La convergence des itérations asynchrones de l'exemple~\cite{BCVC10:ir} n'est pas établie
-lorsque pour $\delta_0$ vaut 1. Il ne peut donc y avoir convergence universelle.
+configurations dans le mode des itérations asynchrones, montrant les limites de
+l'approche.
\begin{figure}
\centering
\includegraphics[scale=0.6]{images/RC07ce.eps}
-\caption{Contre exemple de convergence pour~\ref{fig:RC07CE}} \label{fig:RC07CE}
+\caption{Contre exemple de convergence pour~~\cite{RC07}} \label{fig:RC07CE}
\end{figure}
\section{Conclusion}
\label{sec:spin:concl}
-
+L'idée principale de ce chapitre est que l'on peut,
+pour des réseaux bouléens à délais bornés de petite taille, obtenir
+une preuve de la convergence ou de sa divergence et ce
+de manière automatique.
+L'idée principale est de traduire le réseau en PROMELA et de laisser
+le model checker établir la preuve.
+Toute l'approche a été prouvée: le verdict rendu par a donc valeur de vérité.
+L'approche a cependant ses limites et ne peut donc pas être
+apliquée qu'à des modèles simplifiés de programmes.
+La suite de ce travail consiste à se focaliser sur les systèmes qui ne
+convergent pas.