]> AND Private Git Repository - hdrcouchot.git/blobdiff - main.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
dff
[hdrcouchot.git] / main.tex
index dcbfa7466e916e705209783855ed9bf4557c4e8f..9164d38ad79fb875aae777af7c97a33620352c8e 100644 (file)
--- a/main.tex
+++ b/main.tex
 \usepackage{dsfont}
 \usepackage{graphicx}
 \usepackage{listings}
+\usepackage{tikz}
+\usepackage{pgfplots}
+\usepgfplotslibrary{groupplots}
+
 %\usepackage[font=footnotesize]{subfig}
 \usepackage[utf8]{inputenc}
 \usepackage{thmtools, thm-restate}
 \usepackage{multirow}
+\usepackage{algorithm2e}
+\usepackage{mathtools}
+
 %\declaretheorem{theorem}
 
 %%--------------------
 
 %%--------------------
 %% Title of the document
-\declarehdr{Title}{XX Mois XXXX}
+\declarehdr{Modèles discrets pour la sécurité: des méthodes itératives à l'analyse vectorielle}{XX Mois XXXX}
  
 %%--------------------
 %% Set the author of the HDR
-\addauthor[first.name@utbm.fr]{First}{Name}
+\addauthor[couchot@femto-st.fr]{Jean-François}{Couchot}
+
  
 %%--------------------
 %% Add a member of the jury
 \newcommand{\dom}[0]{\ensuremath{\textit{dom}}}
  \newcommand{\eqNode}[0]{\ensuremath{{\mathcal{R}}}}
 
+
+\newcommand {\tv}[1] {\lVert #1 \rVert_{\rm TV}}
+\def \top {1.8}
+\def \topt {2.3}
+\def \P {\mathbb{P}}
+\def \ov {\overline}
+\def \ts {\tau_{\rm stop}}
+\def\rl{{^{.}}}
+
+\DeclarePairedDelimiter\abs{\lvert}{\rvert}%
+\DeclarePairedDelimiter\norm{\lVert}{\rVert}%
+
+% Swap the definition of \abs* and \norm*, so that \abs
+% and \norm resizes the size of the brackets, and the 
+% starred version does not.
+\makeatletter
+\let\oldabs\abs
+\def\abs{\@ifstar{\oldabs}{\oldabs*}}
+%
+\let\oldnorm\norm
+\def\norm{\@ifstar{\oldnorm}{\oldnorm*}}
+\makeatother
+
 \newtheorem{theorem}{Théorème}
 \newtheorem{lemma}{Lemme}
+\newtheorem{corollary}{Corollaire}
 \newtheorem*{xpl}{Exemple}
-\newtheorem*{Proof}{Preuve}
+
 \newtheorem{Def}{Définition}
 
 \begin{document}
 
 \chapter*{Introduction}
 
-Blabla blabla.
+\input{intro}
 
 \mainmatter
 
-\part{Réseaux Discrets}
+\part{Réseaux discrets}
+
+\chapter{Iterations discrètes de réseaux booléens}\label{chap:sdd}
+
+Ce chapitre formalise tout d'abord ce qu'est 
+un réseau booléen (section~\ref{sec:sdd:formalisation}. On y revoit 
+les différents modes opératoires, leur représentation à l'aide de 
+graphes et les résultats connus de convergence).
+Ce chapitre montre ensuite à la section~\ref{sec:sdd:mixage}
+comment combiner ces modes pour converger aussi 
+souvent, mais plus rapidement vers un point fixe. Les deux 
+dernières sections ont fait l'objet du rapport~\cite{BCVC10:ir}.
 
-\chapter{Iterations discrètes de réseaux booléens}
-\JFC{chapeau à refaire}
-\section{Formalisation}
+\section{Formalisation}\label{sec:sdd:formalisation}
 \input{sdd}
 
-\section{Combinaisons synchrones et asynchrones}
+\section{Combinaisons synchrones et asynchrones}\label{sec:sdd:mixage}
 \input{mixage}
 
 \section{Conclusion}
-\JFC{Conclusion à refaire}
 
 Introduire de l'asynchronisme peut permettre de réduire le temps 
 d'exécution global, mais peut aussi introduire de la divergence. 
-Dans ce chapitre, nous avons exposé comment construire un mode combinant les
+Dans ce chapitre, après avoir introduit les bases sur les réseaux bouléens,
+nous avons exposé comment construire un mode combinant les
 avantage du synchronisme en terme de convergence avec les avantages 
 de l'asynchronisme en terme de vitesse de convergence.
 
@@ -175,14 +216,21 @@ au chaos}
 
 \chapter[Caracterisation des systèmes 
   discrets chaotiques]{Caracterisation des systèmes 
-  discrets chaotiques pour les schémas unaires et généralisés}
-
-La première section  rappelle ce que sont les systèmes dynamiques chaotiques.
-Dire que cette caractérisation dépend du type de stratégie : unaire (TIPE), 
-généralisée (TSI).  Pour chacune d'elle, 
-on introduit une distance différente.
-
-On montre qu'on a des résultats similaires.
+  discrets chaotiques pour les schémas unaires et généralisés}\label{chap:carachaos}
+
+La suite de ce document se focalise sur des systèmes dynamiques discrets qui ne 
+convergent pas. Parmi ceux-ci se trouvent ceux qui sont \og chaotiques\fg{}.
+La première section  de ce chapitre rappelle ce que sont les systèmes 
+dynamiques chaotiques et leur caractéristiques.
+La section~\ref{sec:TIPE12}, qui est une reformulation de~\cite{guyeux10},
+se focalise sur le schéma unaire. Elle est rappelée pour avoir un document se 
+suffisant à lui-même.
+La section~\ref{sec:chaos:TSI} étend ceci au mode généralisé. Pour chacun de ces modes, 
+une métrique est définie. Finalement, la section~\ref{sec:11FCT}
+exhibe des conditions suffisantes premettant d'engendrer 
+des fonctions chaotiques seon le mode unaire.
+Les sections~\ref{sec:TIPE12} et~\ref{sec:11FCT} ont été publiées 
+dans~\cite{bcg11:ij,bcgr11:ip}.
 
 \section{Systèmes dynamiques chaotiques selon Devaney}
 \label{subsec:Devaney}
@@ -191,14 +239,24 @@ On montre qu'on a des résultats similaires.
 \section{Schéma unaire}\label{sec:TIPE12}
 \input{12TIPE}
 
-\section{Schéma généralisé}
+\section{Schéma généralisé}\label{sec:chaos:TSI}
 \input{15TSI}
 
 
-\section{Générer des fonctions chaotiques}
+\section{Générer des fonctions chaotiques}\label{sec:11FCT}
 \input{11FCT} 
 
-\chapter{Prédiction des systèmes chaotiques}
+\section{Conclusion}
+Ce chapitre a montré que les itérations unaires sont chaotiques si
+et seulement si le graphe $\textsc{giu}(f)$ est fortement connexe et 
+que les itérations généralisées sont chaotiques si
+et seulement si le graphe $\textsc{gig}(f)$ est aussi fortement connexe.
+On dispose ainsi à priori d'une collection infinie de fonctions chaotiques.
+Le chapitre suivant s'intéresse à essayer de prédire le comportement 
+de telles fonctions. 
+
+
+\chapter{Prédiction des systèmes chaotiques}\label{chp:ANN}
 \input{chaosANN}
 
 
@@ -206,56 +264,46 @@ On montre qu'on a des résultats similaires.
 
 \part{Applications à la génération de nombres pseudo aléatoires}
 
-\chapter{Caractérisation des générateurs chaotiques}
+\chapter{Caractérisation des générateurs chaotiques}\label{chap:PRNG:chao}
 \input{15RairoGen}
 
+\chapter{Les générateurs issus des codes de Gray}\label{chap:PRNG:gray}
+\input{14Secrypt}
+
+
 
+\part{Application au marquage de média}
 
 
+\chapter{Des embarquements préservant le chaos}\label{chap:watermarking} 
+\input{oxford}
+
+\chapter{Une démarche de  marquage de PDF}\label{chap:watermarking:pdf}
+\input{ahmad}
+
+\chapter{Une démarches plus classique de dissimulation: STABYLO}\label{chap:stabylo}
+ \input{stabylo}
+
+\chapter{Schéma de stéganographie: les dérivées du second ordre}\label{chap:th:yousra}
+ \input{stegoyousra}
 
 
 
 \part{Conclusion et Perspectives}
 
-\JFC{Perspectives pour SDD->Promela}
-Among drawbacks of the method,  one can argue that bounded delays is only 
-realistic in practice for close systems. 
-However, in real large scale distributed systems where bandwidth is weak, 
-this restriction is too strong. In that case, one should only consider that 
-matrix $s^{t}$ follows the  iterations of the system, \textit{i.e.},
-for all $i$, $j$, $1 \le i \le j \le n$,  we have$
-\lim\limits_{t \to \infty} s_{ij}^t = + \infty$. 
-One challenge of this work should consist in weakening this constraint. 
-We plan as future work to take into account other automatic approaches 
-to discharge proofs notably by deductive analysis~\cite{CGK05}. 
-
-\JFC{Perspective ANN}
-
-In  future  work we  intend  to  enlarge  the comparison  between  the
-learning   of  truly   chaotic  and   non-chaotic   behaviors.   Other
-computational intelligence tools such  as support vector machines will
-be investigated  too, to  discover which tools  are the  most relevant
-when facing a truly chaotic phenomenon.  A comparison between learning
-rate  success  and  prediction  quality will  be  realized.   Concrete
-consequences in biology, physics, and computer science security fields
-will then be stated.
-Ajouter lefait que le codede gray n'est pas optimal.
-On pourrait aussi travailler à établir un classement qui préserverait 
-le fait que deux configurations voisines seraient représentées 
-par deux entiers voisins.
+\input{conclusion}
+
+
 
 
 
 
-% \chapter{Conclusion}
 
-% Blabla blabla.
 
 
 \appendix
 
-\chapter{Preuves sur les SDD}
+\chapter{Preuves sur les réseaux discrets}
 
 \section{Convergence du mode mixe}\label{anx:mix}
 \input{annexePreuveMixage}
@@ -270,13 +318,12 @@ par deux entiers voisins.
 \chapter{Preuves sur les systèmes chaotiques}
 
 
-\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
-\input{annexecontinuite.tex}
-
+%\section{Continuité de $G_f$ dans $(\mathcal{X}_u,d)$}\label{anx:cont}
+%\input{annexecontinuite.tex}
 
-\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
-\input{caracunaire.tex}
 
+%\section{Caractérisation des fonctions $f$ rendant chaotique $G_{f_u}$ dans $(\mathcal{X}_u,d)$}\label{anx:chaos:unaire}
+%\input{caracunaire.tex}
 
 \section{Preuve que $d$ est une distance sur $\mathcal{X}_g$}\label{anx:distance:generalise}
 \input{preuveDistanceGeneralisee}
@@ -286,19 +333,40 @@ par deux entiers voisins.
 \input{caracgeneralise.tex}
 
 
-\section{Théorème~\ref{th:Adrien}}\label{anx:sccg}
+\section{Conditions suffisantes pour un $\textsc{giu}(f)$ fortement connexe \label{anx:sccg}}
 \input{annexesccg}
 
 
+\chapter{Preuves sur les générateurs de nombres pseudo-aléatoires}\label{anx:generateur}
+\input{annexePreuveDistribution}
+
+\section{Codes de Gray équilibrés par induction}
+\input{annexePreuveGrayEquilibre}
+
+\section{Majoration du temps de mixage}
+\input{annexePreuveStopping}
+
+\chapter{Preuves sur le marquage de média}\label{anx:marquage}
+\section{Le marquage est $\epsilon$-sego-secure}
+\input{annexePreuveMarquagedhci}
+
+\section{Le mode $f_l$ est doublement stochastique}\label{anx:marquage:dblesto}
+\input{annexePreuveMarquagefldblement}
+
+\section{Le marquage est correct et complet}\label{anx:preuve:marquage:correctioncompletue}
+\input{annexePreuveMarquageCorrectioncompletude}
+
+% \section{Complexités d'algorithmes de stéganographie}
+% \label{anx:preuve:cplxt}
+% \input{annexePreuvesComplexiteStego}
 
 
-\backmatter
 
 \bibliographystyle{apalike}
 \bibliography{abbrev,biblioand}
 \listoffigures
 \listoftables
-\listofdefinitions
+
  
 \end{document}