X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/103fee06d77ee199f8956ccb0747b45676c834e5..44a56c5eb4a1dfdf7dc67735c5c00f478cef2ede:/11FCT.tex diff --git a/11FCT.tex b/11FCT.tex index 0e9c64f..498af15 100644 --- a/11FCT.tex +++ b/11FCT.tex @@ -55,7 +55,8 @@ $f_j$ et qui permet de n'engendrer que des fonctions $f$ dont le graphe d'itérations $\textsc{giu}(f)$ est fortement connexe. -\begin{theorem}\label{th:Adrien} +\begin{restatable}{theorem}{thAdrien} +\label{th:Adrien} Soit $f$ une fonction de $\Bool^{\mathsf{N}}$ vers lui-même telle que: \begin{enumerate} \item @@ -68,11 +69,11 @@ chaque sommet de $\Gamma(f)$ est accessible depuis un sommet qui possède une boucle négative. \end{enumerate} Alors, $\textsc{giu}(f)$ est fortement connexe. -\end{theorem} +\end{restatable} La preuve de ce théorème est donnée en annexe~\ref{anx:sccg}. -Illustrons ce théorème par un exemple. On considère par le graphe d'interactions +Illustrons ce théorème par un exemple. On considère le graphe d'interactions $\Gamma(f)$ donné en figure~\ref{fig:Adrien:G}. Il vérifie le théorème~\ref{th:Adrien}: toutes les fonctions $f$ possédant un tel graphe d'interactions @@ -90,4 +91,3 @@ Deux fonctions sont équivalentes si leurs \textsc{giu} sont isomorphes \end{center} \caption{Exemple de graphe d'interactions vérifiant le théorème~\ref{th:Adrien}} \label{fig:Adrien:G} \end{figure} -