X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/hdrcouchot.git/blobdiff_plain/103fee06d77ee199f8956ccb0747b45676c834e5..d4e1bfa4290a182013268daf63d78c1f4fce5b55:/15TSI.tex diff --git a/15TSI.tex b/15TSI.tex index f2fe17b..138036f 100644 --- a/15TSI.tex +++ b/15TSI.tex @@ -7,7 +7,7 @@ On reprend ici le même plan que dans la section précédente. Dans le schéma généralisé, à la $t^{\textrm{ème}}$ itération, c'est l'ensemble -des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[n]$) qui +des $s_{t}^{\textrm{ème}}$ éléments (inclus dans $[{\mathsf{N}}]$) qui sont mis à jour (cf. équation~(\ref{eq:schema:generalise})). On redéfinit la fonction la fonction $F_{f_g}: \Bool^{\mathsf{N}} \times \mathcal{P}(\{1, \ldots, \mathsf{N}\}) @@ -36,7 +36,7 @@ configurations $x^t$ sont définies par la récurrence \] où la fonction $\sigma$ est définie comme à la section précédente. A nouveau, les itérations généralisées - de $f$ induites par $x^0$ et la stratégie $S$. + de $f$ induites par $x^0$ et la stratégie $S$ décrivent la même orbite que les itérations parallèles de $G_{f_g}$ depuis un point initial $X^0=(x^0,S)$ @@ -62,7 +62,8 @@ On considère l'espace $\mathcal{X}_g=\mathcal{P}(\{1, \ldots, {\mathsf{N}}\})^{ \Bool^{\mathsf{N}}$ et on définit la distance $d$ entre les points $X=(S,x)$ et $X'=(S',x')$ de $\mathcal{X}_g$ par -\[ + +\begin{equation} d(X,X')= d_H(x,x')+d_S(S,S'),~\textrm{où}~ \left\{ \begin{array}{l} @@ -70,7 +71,8 @@ d(X,X')= d_H(x,x')+d_S(S,S'),~\textrm{où}~ \displaystyle{d_S(S,S')=\frac{9}{{\mathsf{N}}}\sum_{t\in\Nats}\frac{|S_t \Delta S'_t|}{10^{t+1}}}. \end{array} \right.\,. -\] +\label{eq:distance:Xg} +\end{equation} La fonction $d$ est une somme de deux fonctions. La fonction $d_H$ est la distance de Hamming; il est aussi établi que la @@ -79,7 +81,7 @@ Ainsi, pour montrer que $d$ est aussi une distance, il suffit de montrer que $d_S$ en une aussi, ce qui est fait en annexe~\ref{anx:distance:generalise}. La section suivante caractérise les fonctions $f$ qui sont -chaotiques pour le schéma généralisées. +chaotiques pour le schéma généralisé. \subsection{Caractérisation des fonctions rendant chaotiques $G_{f_g}$ sur $\mathcal{X}_g$} @@ -88,13 +90,23 @@ en les adaptant à $G_{f_g}$. On a les théorèmes suivants dont les preuves sont données en annexe~\ref{anx:chaos:generalise}. -\begin{theorem} $G_{f_g}$ est transitive si et seulement si + + +\begin{restatable}{theorem}{caractransitivegeneralise} +\label{Theo:carac:transitive:gen} +$G_{f_g}$ est transitive si et seulement si $\textsc{gig}(f)$ est fortement connexe. -\end{theorem} +\end{restatable} -\begin{theorem} -\label{Prop: T est dans R:g} $\mathcal{T} \subset \mathcal{R}$. -\end{theorem} + + +\begin{restatable}{theorem}{caracsubgeneralise} +\label{Prop: T est dans R:g} + $\mathcal{T} \subset \mathcal{R}$. +\end{restatable} + +On peut conclure que $\mathcal{C} = \mathcal{R} \cap \mathcal{T} += \mathcal{T}$. On a alors la caractérisation suivante: \begin{theorem}%[Characterization of $\mathcal{C}$]